Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 19(1): 195, 2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29703149

RESUMO

BACKGROUND: Understanding variation in genome structure is essential to understand phenotypic differences within populations and the evolutionary history of species. A promising form of this structural variation is copy number variation (CNV). CNVs can be generated by different recombination mechanisms, such as non-allelic homologous recombination, that rely on specific characteristics of the genome architecture. These structural variants can therefore be more abundant at particular genes ultimately leading to variation in phenotypes under selection. Detailed characterization of CNVs therefore can reveal evolutionary footprints of selection and provide insight in their contribution to phenotypic variation in wild populations. RESULTS: Here we use genotypic data from a long-term population of great tits (Parus major), a widely studied passerine bird in ecology and evolution, to detect CNVs and identify genomic features prevailing within these regions. We used allele intensities and frequencies from high-density SNP array data from 2,175 birds. We detected 41,029 CNVs concatenated into 8,008 distinct CNV regions (CNVRs). We successfully validated 93.75% of the CNVs tested by qPCR, which were sampled at different frequencies and sizes. A mother-daughter family structure allowed for the evaluation of the inheritance of a number of these CNVs. Thereby, only CNVs with 40 probes or more display segregation in accordance with Mendelian inheritance, suggesting a high rate of false negative calls for smaller CNVs. As CNVRs are a coarse-grained map of CNV loci, we also inferred the frequency of coincident CNV start and end breakpoints. We observed frequency-dependent enrichment of these breakpoints at homologous regions, CpG sites and AT-rich intervals. A gene ontology enrichment analyses showed that CNVs are enriched in genes underpinning neural, cardiac and ion transport pathways. CONCLUSION: Great tit CNVs are present in almost half of the genes and prominent at repetitive-homologous and regulatory regions. Although overlapping genes under selection, the high number of false negatives make neutrality or association tests on CNVs detected here difficult. Therefore, CNVs should be further addressed in the light of their false negative rate and architecture to improve the comprehension of their association with phenotypes and evolutionary history.


Assuntos
Variações do Número de Cópias de DNA , Redes Reguladoras de Genes , Aves Canoras/genética , Animais , Proteínas Aviárias/genética , Evolução Molecular , Feminino , Frequência do Gene , Masculino , Herança Materna , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética
2.
Front Zool ; 12(Suppl 1): S10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26913051

RESUMO

BACKGROUND: Variation in early nutrition is known to play an important role in shaping the behavioural development of individuals. Parental prey selection may have long-lasting behavioural influences. In birds foraging on arthropods, for instance, the specific prey types, e.g. spiders and caterpillars, matter as they have different levels of taurine which may have an effect on personality development. Here we investigated how naturally occurring variation in the amounts of spiders and caterpillars, provisioned to nestlings at day 4 and 8 after hatching, is related to the response to handling stress in a wild passerine, the great tit (Parus major). Broods were cross-fostered in a split-brood design allowing us to separate maternal and genetic effects from early rearing effects. Adult provisioning behaviour was monitored on day four and day eight after hatching using video recordings. Individual nestlings were subjected to a handling stress test at an age of 14 days, which is a validated proxy for exploratory behaviour as an adult. RESULTS: Variation in handling stress was mainly determined by the rearing environment. We show that, contrary to our predictions, not the amount of spider biomass, but the amount of caterpillar biomass delivered per nestling significantly affected individual performance in the stress test. Chicks provisioned with lower amounts of caterpillars exhibited a stronger stress response, reflecting faster exploratory behaviour later on in life, than individuals who received larger amounts of caterpillars. CONCLUSIONS: These results suggest that natural variation in parental behaviour in wild birds modulates the developmental trajectories of their offspring's personality via food provisioning. Since parental provisioning behaviour might also reflect the local environmental conditions, provisioning behaviour may influence how nestlings respond to these local environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA