Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234153

RESUMO

Conventional asphalt pavement has a deep surface color and large thermal inertia, which leads to the continuous absorption of solar thermal radiation and the sharp rise of surface temperature. This can easily lead to the permanent deformation of pavement, as well as aggravate the urban heat island (UHI) effect. Cool pavement with a reflective coating plays an important role in reducing pavement temperature and alleviating the UHI effect. It is of great significance to study the influence of temperature on the mechanical response of different types of pavement under vehicle loading. Therefore, this study examined the heat exchange theory between pavement and the external environment and utilized the representative climate data of a 24 h period in the summer. Two kinds of three-dimensional finite element models were established for the analysis of temperature distribution and the mechanical responses of conventional pavement and cool pavement. The results show that in this environmental condition, conventional pavement temperatures can exceed 50 °C under high temperatures in summer, which allows for the permanent deformation of pavement and further affects the service life of asphalt pavement. The temperature difference in a conventional pavement surface between 6 h (24.7 °C) and 22 h (30.2 °C) is much less than that between 22 h (30.2 °C) and 13 h (50.1 °C) in the summer. However, the difference in the vertical displacements of the pavement surface between 6 h and 22 h is much larger than that between 22 h and 13 h. One reason is that the difference in temperature distribution between the morning and night leads to changes in pavement structure stiffness, resulting in significant differences in vertical displacement. Cool pavement has a significant cooling effect, which can reduce the surface temperature of a road by more than 15 °C and reduce the vertical displacement of the pavement by approximately 11.3%, which improves the rutting resistance of the pavement. However, the use of cool pavement will not change the horizontal strain at the bottom of the asphalt base and will not improve the fatigue resistance of asphalt pavement. This research will lay the foundation for further clarifying the difference in the mechanical properties between the two types of pavements in the management and maintenance stage.

2.
Materials (Basel) ; 15(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35591377

RESUMO

A key aspect of sustainable pavement construction is the use of environmentally-friendly designed pavement materials. These materials are characterized by the fact that they are renewable raw materials, require a low amount of energy during production and in the best case, are made from a high proportion of recyclable materials in order to reduce waste. A number of recent studies have demonstrated the recyclability of waste materials that can be very well utilized in road construction. This study describes the recycling of a new and innovative topcoat system that already contains recycled materials. However, the focus is on guaranteeing the mechanical performance of the innovative absorption layer where different portions of used material are added. Therefore, low-temperature behaviour, durability, fatigue and noise absorption are investigated in detail and it is concluded that their function is preserved. In order to investigate these characteristics, the impedance measuring tube, the uniaxial cyclic compression test (UCCT), the three point bending test (3PB), the uniaxial tension stress test (UTST) and the thermal stress restrained specimen test (TSRST) are used. However, the examined absorption material can be reused to build innovative roads.

3.
Materials (Basel) ; 15(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35329708

RESUMO

The Guide for Design of Pavement Structures (AASHTO 86/93) and Mechanistic Empirical Pavement Design Guide (MEPDG) are two common methods to design continuously reinforced concrete pavement (CRCP) published by the American Association of State Highway and Transportation Officials (AASHTO) in the USA. The AASHTO 86/93 is based on empirical equations to assess the performance of highway pavements under moving loads with known magnitude and frequency derived from experiments on AASHTO road tests. The MEPDG is a pavement design method based on engineering mechanics and numerical models for analysis. It functions by incorporating additional attributes such as environment, material properties, and vehicle axle load to predict pavement performance and degradation at the selected reliability level over the intended performance period. In order to evaluate the CRCP design procedure and performance, crack width (CW) and crack spacing (CS) from five examined test tracks in Europe with different climate condition, base layer, geometry, and materials were collected in this paper and compared with predicted distresses as well as CW and CS from AASHTO 86/93 and MEPDG design methods. The results show that the interactions between geometrics, material properties, traffic, and environmental conditions in the MEPDG method are more pronounced than in the AASHTO 86/93 and the prediction of CS and CW based on MEPDG matched closely with the recorded data from sections.

4.
Materials (Basel) ; 16(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614697

RESUMO

Continuously reinforced concrete pavement (CRCP) is a representative type of concrete pavement constructed with continuous steel bars without intermediate transverse expansions. With reference to pavement conditions, CRCP is an exceptional type of concrete pavement according to the Highway Pavement Condition Index (HPCI) and International Roughness Index (IRI). The two main design methods for CRCP are AASHTO 86/93 and the Mechanistic-Empirical Pavement Design Guide (MEPDG). Because of limitations of the AASHTO 86/93 design method, the MEPDG method is more reliable. While incorporating the interactions among geometrics, pavement structure layers, material properties, subgrade, traffic, and environmental conditions, and the prediction values according to the MEPDG method, it matched the measured results of crack spacing and crack width. The MEPDG punchout, crack width and spacing, and load transfer efficiency (LTE) models were evaluated, and results were compared with the test sections in three European countries consisting of different construction details, which were investigated and recorded between 2019 and 2021. In this sense, a calculation tool was developed to consider the influence of different parameters in design process. In addition, sensitivity analyses were executed for the development of punchout, considering various input parameters. The track surveying and the evaluation of the results indicated that the design process can be improved with consideration of some criteria such as crack formation time or adjustment of the correlation between crack width and crack spacing. Due to the very important function of erosion and resulting pumping in the deterioration of CRCP, it is advisable to include the influence of the base layer and the influence of different shoulder type and heavy traffic volume or effect of deflection in the calculations.

5.
Materials (Basel) ; 14(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34947433

RESUMO

Fatigue performance is one of the most important properties that affect the service life of asphalt mixture. Many fatigue test methods have been developed to evaluate the fatigue performance in the lab. Although these methods have contributed a lot to the fatigue performance evaluation and the development of fatigue related theory and model, their limitations should not be ignored. This paper starts by characterizing the stress state in asphalt pavement under a rolling wheel load. After that, a literature survey focusing on the experimental methods for fatigue performance evaluation is conducted. The working mechanism, applications, benefits, and limitations of each method are summarized. The literature survey results reveal that most of the lab test methods primarily focus on the fatigue performance of asphalt mixture on a material level without considering the effects of pavement structure. In addition, the stress state in the lab samples and the loading speed differ from those of asphalt mixture under rolling wheel tire load. To address these limitations, this paper proposes the concept of an innovative lab fatigue test device named Accelerated Repeated Rolling Wheel Load Simulator (ARROWS). The motivation, concept, and working mechanism of the ARROWS are introduced later in this paper. The ARROWS, which is under construction, is expected to be a feasible and effective method to simulate the repeated roll wheel load in the laboratory.

6.
Materials (Basel) ; 14(15)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34361331

RESUMO

The homogeneity of asphalt mixtures blended with reclaimed asphalt pavement (RAP) is affected by many factors. Due to the complicated compositions of recycled asphalt mixtures, the inhomogeneity issue might cause insufficient mechanical properties of asphalt mixtures, even though a design method was appropriately adopted. Therefore, it is of great significance to study the influence of mixing conditions on the homogeneity of asphalt mixtures blended with RAP materials. This study focused on the macro-scale homogeneity of produced asphalt mixtures. Specifically, asphalt mixtures incorporated with 40% RAP content were produced in a laboratory using different mixing times and mixing temperatures. A multi-direction indirect tensile stiffness modulus (ITSM) test was proposed to quantify the homogeneity of produced samples. In addition, the digital image processing (DIP) method was used to identify the distribution of aggregates and RAP binder. The results indicated that the influence of mixing time on the macro-homogeneity of asphalt mixtures indicated that a longer mixing time was favorable for the material dispersion. The influence of mixing temperature mainly rested on two perspectives. One was that the temperature variation induced the change of binder viscosity. The other was that the temperature influences the diffusion process between RAP binder and new bitumen, which further affected the mechanical performance of produced asphalt mixtures.

7.
Materials (Basel) ; 14(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799375

RESUMO

The piezoelectric energy harvester (PEH) is a device for recycling wasted mechanical energy from pavements. To evaluate energy collecting efficiency of PEHs with various piezoelectric unit distributions, finite element (FE) models of the PEHs were developed in this study. The PEH was a square of 30 cm × 30 cm with 7 cm in thickness, which was designed according to the contact area between tire and pavement. Within the PEHs, piezoelectric ceramics (PZT-5H) were used as the core piezoelectric units in the PEHs. A total of three distributions of the piezoelectric units were considered, which were 3 × 3, 3 × 4, and 4 × 4, respectively. For each distribution, two diameters of the piezoelectric units were considered to investigate the influence of the cross section area. The electrical potential, total electrical energy and maximum von Mises stress were compared based on the computational results. Due to the non-uniformity of the stress distribution in PEHs, more electrical energy can be generated by more distributions and smaller diameters of the piezoelectric units; meanwhile, more piezoelectric unit distributions cause a higher electrical potential difference between the edge and center positions. For the same distribution, the piezoelectric units with smaller diameter produce higher electrical potential and energy, but also induce higher stress concentration in the piezoelectric units near the edge.

8.
Langmuir ; 37(11): 3420-3427, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33689360

RESUMO

The interaction of bitumen colloidal (a form of heavy oil) with inorganic solids, for example, mineral aggregates, in both air and water environments is ubiquitous in nature and engineering. However, our knowledge of the underlying physical mechanism of bitumen-/solid-wetting phenomena is still very limited. The current study aims to reveal how the mineralogy and topography of aggregate surfaces affect the wetting and water-induced dewetting of bitumen on aggregate surfaces. For this, contact angle tests were performed to measure the surface energies of bitumen and aggregate surfaces varying in both mineralogy and roughness. Based on the measurements, both qualitative and quantitative analyses were conducted for the interaction of bitumen/aggregate interface in air and water environments. Complete wetting and complete dewetting hold for the air/bitumen/aggregate and water/bitumen/aggregate interfaces, respectively. The negative interfacial adhesive energy for the air/bitumen/aggregate interface and the interfacial debonding energy for the water/bitumen/aggregate interface imply that both bitumen wetting and water-induced bitumen dewetting on flat surfaces are thermodynamically favorable. The Wenzel model approximation holds up for the rough aggregate surface interface systems. The interfacial adhesive energy and interfacial debonding energy are enhanced geometrically by the roughness factor r, which indicates that the textured aggregate surface is in favor of force-induced interfacial cracking resistance but shows an adverse effect to moisture damage resistance. The findings from the current study provide guidelines for materials design in pavement engineering.

9.
Environ Res ; 193: 110560, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33279493

RESUMO

Titanium dioxide (TiO2) is widely used to purify air pollutants in environmental engineering, but it is only activated by ultraviolet (UV) light. The metal or nonmetal single doping of TiO2 cannot observably improve the purification efficiency of TiO2 under visible light. To further increase the photocatalytic activity and purification efficiency of TiO2 on vehicle exhaust under visible light, nitrogen (N)-vanadium (V) co-doped TiO2 was first prepared. The influences of N-V co-doping on phase structures, morphology, microstructures, electronic structures, and photo-absorption performances were then observed and examined using X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-visible light diffuse reflectance spectra. Purification efficiency and reaction rates of N-V co-doped TiO2 on NOx, HC, CO and CO2 in vehicle exhaust were studied using a purification test system under UV and visible light irradiations, respectively. Results indicate that N and V are synchronously doped into the crystal structures of TiO2 to replace O and Ti, respectively. N and V show the synergistic co-doping effect to suppress the grain growth of TiO2 and improve the dispersity and specific surface area of TiO2. Also, the N-V co-doping introduces more lattice distortions and defects in the crystal lattices of TiO2. Further, N presents in the form of Ti-O-N and O-Ti-N bonds, and V exists in the form of V5+ and V4+. These form the impurity energy level in the band gap to narrow the energy band of TiO2. Additionally, the N-V co-doping broadens the photoabsorption threshold of TiO2 from 387 nm to 611 nm. These results show that N-V co-doping increases the photocatalytic activity of TiO2. Finally, the N-V co-doped TiO2 shows higher catalytic purification efficiency on NOx and HC under UV and visible light. The N-V co-doping obviously increases the purification efficiency of TiO2 on CO and CO2 when exposed to visible light, and their reversible reactions are not found. The N-V co-doping of TiO2 is a feasible approach to purify vehicle exhaust under visible light irradiations.


Assuntos
Nitrogênio , Vanádio , Catálise , Luz , Titânio
10.
Polymers (Basel) ; 12(9)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887279

RESUMO

In order to further understand the shape memory mechanism of a silicon dioxide/shape memory polyurethane (SiO2/SMPU) composite, the thermodynamic properties and shape memory behaviors of prepared SiO2/SMPU were characterized. Dynamic changes in the molecular orientation and interphase structures of SiO2/SMPU during a shape memory cycle were then discussed according to the small angle X-ray scattering theory, Guinier's law, Porod approximation, and fractal dimension theorem. In this paper, a dynamic mechanical analyzer (DMA) helped to determine the glass transition start temperature (Tg) by taking the onset point of the sigmoidal change in the storage modulus, while transition temperature (Ttrans) was defined by the peak of tan δ, then the test and the calculated results indicated that the Tg of SiO2/SMPU was 50.4 °C, and the Ttrans of SiO2/SMPU was 72.18 °C. SiO2/SMPU showed good shape memory performance. The programmed SiO2/SMPU showed quite obvious microphase separation and molecular orientation. Large-size sheets and long-period structures were formed in the programmed SiO2/SMPU, which increases the electron density difference. Furthermore, some hard segments had been rearranged, and their gyration radii decreased. In addition, several defects formed at the interfaces of SiO2/SMPU, which caused the generation of space charges, thus leading to local electron density fluctuations. The blurred interphase structure and the intermediate layer formed in the programmed SiO2/SMPU and there was evident crystal damage and chemical bond breakage in the recovered SiO2/SMPU. Finally, the original and recovered SiO2/SMPU samples belong to the surface fractal system, but the programmed sample belongs to the mass fractal and reforms two-phase structures. This study provides an insight into the shape memory mechanism of the SiO2/SMPU composite.

11.
Materials (Basel) ; 13(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927682

RESUMO

To reduce the thermal-oxidative aging of asphalt and the release amount of harmful volatiles during the construction of asphalt pavement, a new composite anti-aging agent was developed. Since the volatiles were mainly released from saturates and aromatics during the thermal-oxidative aging of asphalt, expanded graphite (EG) was selected as a stabilizing agent to load magnesium hydroxide (MH) and calcium carbonate (CaCO3) nanoparticles for preparing the anti-aging agents of saturates and aromatics, respectively. Thermal stability and volatile constituents released from saturates and aromatics before and after the thermal-oxidative aging were characterized using the isothermal Thermogravimetry/Differential Scanning Calorimetry-Fourier Transform Infrared Spectrometer test (TG/DSC-FTIR test). Test results indicate that anti-aging agents of EG/MH and EG/CaCO3 effectively inhibit the volatilization of light components in asphalt and improve the thermal stability of saturates and aromatics. Then, the proportions of EG, MH, and CaCO3 added in the developed composite anti-aging agent of EG/MH/CaCO3 are 2:1:3 by weight. EG/MH/CaCO3 plays a synergetic effect on inhibiting the thermal-oxidative aging of asphalt, and reduces the release amount of harmful volatiles during the thermal-oxidative aging after EG/MH/CaCO3 is added into asphalt at the proposed content of 10 wt.%. EG plays a synergistic role with MH and CaCO3 nanoparticles to prevent the chain reactions, inhibiting the thermal-oxidative aging of asphalt.

12.
Materials (Basel) ; 13(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182857

RESUMO

A polyurethane-based rubber-modified layer within a road superstructure leads to absorption of traffic emissions. Noise emissions have quite a negative effect on society, as they lead to high stress levels and health risks for people. Therefore, constructional methods of noise-reducing road layers have been developed before. This research paper focuses on the questions whether the existing noise-reducing road constructions, which have a low durability, can be optimized in terms of a longer duration while simultaneously maintaining the noise-reducing effects. Within this research, a large parametric study contributed to an optimal solution of a noise-reducing and durable layer. We found that noise absorption is mainly dependent of the void content of the pavement and its flexibility. Also, a result is that the durability of a road layer is based on the properties of the binder as well as the composition of the mixture, i.e., the grading curve. As we used polyurethane binders within our mixtures, which have a low dependency on regular environmental temperatures after their complete chemical reaction, we can imply a low temperature dependence of the entire polyurethane asphalt mixture. Based on these results, the construction of a noise-reducing and durable road layer is a great solution. The application of such road layers leads to lower traffic emissions at major hotspots. These might be urban highways, where the infrastructure is too tight to build noise barriers, enclosures or tunnels.

13.
Materials (Basel) ; 12(19)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547065

RESUMO

Continuously increasing traffic volumes necessitate accurate design methods to ensure the optimal service life and efficient use of raw materials. Numerical simulations commonly pursue a simplified approach with homogeneous pavement materials and homogeneous loading. Neither the pavement geometry nor the loading is homogeneous in reality. In this study, the mechanical response of the asphalt mixtures due to homogeneous loads is compared with their mechanical response to inhomogeneous loads. A 3D finite element model was reconstructed with the aid of X-ray computed tomography. Sections of a real tire's pressure distribution were used for the inhomogeneous loads. The evaluation of the material response analyzes the stress distribution within the samples. An inhomogeneous load evokes an increased proportion of high stresses within the sample in every case, particularly at low temperatures. When comparing the two types of loads, the average stresses on the interior (tension and compression) exhibit significant differences. The magnitude of the discrepancies shows that this approach yields results that differ significantly from the common practice of using homogeneous models and can be used to improve pavement design.

14.
Sensors (Basel) ; 19(14)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331114

RESUMO

The next generation of Intelligent Transportation Systems (ITS) will strongly rely on a high level of detail and coverage in traffic data acquisition. Beyond aggregated traffic parameters like the flux, mean speed, and density used in macroscopic traffic analysis, a continuous location estimation of individual vehicles on a microscopic scale will be required. On the infrastructure side, several sensor techniques exist today that are able to record the data of individual vehicles at a cross-section, such as static radar detectors, laser scanners, or computer vision systems. In order to record the position data of individual vehicles over longer sections, the use of multiple sensors along the road with suitable synchronization and data fusion methods could be adopted. This paper presents appropriate methods considering realistic scale and accuracy conditions of the original data acquisition. Datasets consisting of a timestamp and a speed for each individual vehicle are used as input data. As a first step, a closed formulation for a sensor offset estimation algorithm with simultaneous vehicle registration is presented. Based on this initial step, the datasets are fused to reconstruct microscopic traffic data using quintic Beziér curves. With the derived trajectories, the dependency of the results on the accuracy of the individual sensors is thoroughly investigated. This method enhances the usability of common cross-section-based sensors by enabling the deriving of non-linear vehicle trajectories without the necessity of precise prior synchronization.

15.
Materials (Basel) ; 12(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003513

RESUMO

To give engineers involved in planning and designing of asphalt pavements a more accurate prediction of crack initiation and propagation, theory-based models need to be developed to connect the loading conditions and fracture mechanisms present in laboratory tests and under traffic loading. The aim of this study is to develop a technical basis for the simulation of fracture behavior of asphalt pavements. The cohesive zone model (CZM) approach was applied in the commercial FE software ABAQUS to analyze crack propagation in asphalt layers. The CZM developed from the asphalt mixtures in this study can be used to simulate the fracture behavior of pavements and further optimize both the structure and the materials. The investigations demonstrated that the remaining service life of asphalt pavements under cyclic load after the initial onset of macro-cracks can be predicted. The developed CZM can, therefore, usefully supplement conventional design methods by improving the accuracy of the predicted stress states and by increasing the quality, efficiency, and safety of mechanical design methods by using this more realistic modeling approach.

16.
Materials (Basel) ; 12(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003521

RESUMO

The feasibility and effectivity of recycling waste rubber and waste plastic (WRP) into asphalt binder as a waste treatment approach has been documented. However, directly blending WRP with asphalt binder brings secondary environmental pollution. Recent research has shown that the addition of WRP into asphalt binder may potentially improve the workability of asphalt binder without significantly compromising its mechanical properties. This study evaluates the feasibility of using the additives derived from WRP as a multifunctional additive which improves both the workability and mechanical properties of asphalt binder. For this purpose, WRP-derived additives were prepared in laboratory. Then, three empirical characteristics-viscosity, rutting factor, fatigue life were analyzed. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were employed to evaluate the effect of WRP-derived additive on the workability and chemical and mechanical properties of base binder. The dispersity of WRP-derived additive inside asphalt binder was also characterized using fluorescence microscope (FM). Results from this study showed that adding WRP-derived additive increases the workability of base binder. The WRP-derived additive appears positive on the high- and low- temperature performance as well as the fatigue life of base binder. The distribution of the WRP-derived additive inside base binder was uniform. In addition, the modification mechanism of WRP-derived additive was also proposed in this paper.

17.
Materials (Basel) ; 11(2)2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29415421

RESUMO

Conventional asphalt binder derived from the petroleum refining process is widely used in pavement engineering. However, asphalt binder is a non-renewable material. Therefore, the use of a co-production of renewable bio-oil as a modifier for petroleum asphalt has recently been getting more attention in the pavement field due to its renewability and its optimization for conventional petroleum-based asphalt binder. Significant research efforts have been done that mainly focus on the mechanical properties of bio-asphalt binder. However, there is still a lack of studies describing the effects of the co-production on performance of asphalt binders from a micro-scale perspective to better understand the fundamental modification mechanism. In this study, a reasonable molecular structure for the co-production of renewable bio-oils is created based on previous research findings and the observed functional groups from Fourier-transform infrared spectroscopy tests, which are fundamental and critical for establishing the molecular model of bio-asphalt binder with various biomaterials contents. Molecular simulation shows that the increase of biomaterial content causes the decrease of cohesion energy density, which can be related to the observed decrease of dynamic modulus. Additionally, a parameter of Flexibility Index is employed to characterize the ability of asphalt binder to resist deformation under oscillatory loading accurately.

18.
Materials (Basel) ; 10(9)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28867813

RESUMO

Analyses of dynamic responses are significantly important for the design, maintenance and rehabilitation of asphalt pavement. In order to evaluate the dynamic responses of asphalt pavement under moving loads, a specific computational program, SAFEM, was developed based on a semi-analytical finite element method. This method is three-dimensional and only requires a two-dimensional FE discretization by incorporating Fourier series in the third dimension. In this paper, the algorithm to apply the dynamic analysis to SAFEM was introduced in detail. Asphalt pavement models under moving loads were built in the SAFEM and commercial finite element software ABAQUS to verify the accuracy and efficiency of the SAFEM. The verification shows that the computational accuracy of SAFEM is high enough and its computational time is much shorter than ABAQUS. Moreover, experimental verification was carried out and the prediction derived from SAFEM is consistent with the measurement. Therefore, the SAFEM is feasible to reliably predict the dynamic response of asphalt pavement under moving loads, thus proving beneficial to road administration in assessing the pavement's state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA