Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2828: 69-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39147971

RESUMO

The acellular slime mold Physarum polycephalum is a large, unicellular amoeba, which, due to its huge size, is well suited to investigate chemotaxis and cellular locomotion. The myxomycete has an astonishing behavioral repertoire and is highly responsive to changes in its environment, which map to changes in its tubular network, internal cytoplasm flow, and cytoskeleton. The behavioral repertoire includes problem-solving, decision-making, and memory. P. polycephalum's chemo- and phototaxis are especially well studied. This chapter describes how to cultivate different morphotypes of P. polycephalum (micro-, meso-, and macroplasmodia). Furthermore, the setup of a chemotaxis experiment and the acquisition and analysis of chemotaxis data is described.


Assuntos
Quimiotaxia , Locomoção , Physarum polycephalum , Physarum polycephalum/fisiologia , Physarum polycephalum/citologia , Quimiotaxia/fisiologia , Locomoção/fisiologia
2.
Philos Trans R Soc Lond B Biol Sci ; 376(1820): 20190757, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33487112

RESUMO

The slime mould Physarum polycephalum, an aneural organism, uses information from previous experiences to adjust its behaviour, but the mechanisms by which this is accomplished remain unknown. This article examines the possible role of oscillations in learning and memory in slime moulds. Slime moulds share surprising similarities with the network of synaptic connections in animal brains. First, their topology derives from a network of interconnected, vein-like tubes in which signalling molecules are transported. Second, network motility, which generates slime mould behaviour, is driven by distinct oscillations that organize into spatio-temporal wave patterns. Likewise, neural activity in the brain is organized in a variety of oscillations characterized by different frequencies. Interestingly, the oscillating networks of slime moulds are not precursors of nervous systems but, rather, an alternative architecture. Here, we argue that comparable information-processing operations can be realized on different architectures sharing similar oscillatory properties. After describing learning abilities and oscillatory activities of P. polycephalum, we explore the relation between network oscillations and learning, and evaluate the organism's global architecture with respect to information-processing potential. We hypothesize that, as in the brain, modulation of spontaneous oscillations may sustain learning in slime mould. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.


Assuntos
Adaptação Biológica , Aprendizagem , Memória , Physarum polycephalum/fisiologia , Transdução de Sinais
3.
Protoplasma ; 256(6): 1647-1655, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31267225

RESUMO

Glucose deprivation in the slime mold Physarum polycephalum leads to a specific morphotype, a highly motile mesoplasmodium. We investigated the ultrastructure of both mesoplasmodia and non-starved plasmodia and found significantly increased numbers of mitochondria in glucose-deprived mesoplasmodia. The volume of individual mitochondria was the same in both growth forms. We conjecture that the number of mitochondria correlates with the metabolic state of the cell: When glucose is absent, the slime mold is forced to switch to different metabolic pathways, which occur inside mitochondria. Furthermore, a catabolic cue (such as AMP-activated protein kinase (AMPK)) could stimulate mitochondrial biogenesis.


Assuntos
Glucose/metabolismo , Mitocôndrias/metabolismo , Physarum polycephalum/química
4.
PLoS One ; 14(4): e0215622, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31013306

RESUMO

The plasmodial slime mold Physarum polycephalum exhibits strong, periodic flow of cytoplasm through the veins of its network. In the special case of mesoplasmodia, a newly described starvation-induced, shape-constant morphotype, this periodic endoplasm streaming is the basis of locomotion. Furthermore, we presume that cytoplasm flow is also involved in signal transmission and signal processing. Mesoplasmodia motility resembles amoeboid locomotion. In contrast to other amoebae, however, mesoplasmodia move without extending pseudopods and retain a coherent, fan-shaped morphology throughout their steady locomotion. Attaining sizes of up to 2 mm2, mesoplasmodia are also much bigger than other amoebae. We characterize this particular type of locomotion and identify patterns of movement. By using the analogy between pulsatile fluid flow through a network of elastic tubes and electrical circuits, we build a lumped model that explains observed fluid flow patterns. Essentially, the mesoplasmodium acts as a low-pass filter, permitting only low-frequency oscillations to propagate from back to front. This frequency selection serves to optimize flow and reduces power dissipation. Furthermore, we introduce a distributed element into the lumped model to explain cell polarization during the onset of chemotaxis: Biochemical cues (internal or external) lead to a local softening of the actin cortex, which in turn causes an increased flow of cytoplasm into that area and, thus, a net forward movement. We conclude that the internal actin-enclosed vein network gives the slime mold a high measure of control over fluid transport, especially by softening or hardening, which in turn leads to polarization and net movement.


Assuntos
Citoplasma/fisiologia , Locomoção/fisiologia , Modelos Biológicos , Physarum polycephalum/fisiologia , Hidrodinâmica
5.
Phys Rev Lett ; 109(7): 078103, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-23006405

RESUMO

We study the formation of transportation networks of the true slime mold Physarum polycephalum after fragmentation by shear. Small fragments, called microplasmodia, fuse to form macroplasmodia in a percolation transition. At this topological phase transition, one single giant component forms, connecting most of the previously isolated microplasmodia. Employing the configuration model of graph theory for small link degree, we have found analytically an exact solution for the phase transition. It is generally applicable to percolation as seen, e.g., in vascular networks.


Assuntos
Modelos Teóricos , Physarum polycephalum/fisiologia , Modelos Biológicos , Transição de Fase , Physarum polycephalum/citologia , Physarum polycephalum/crescimento & desenvolvimento
6.
J Phys Condens Matter ; 22(19): 194106, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21386433

RESUMO

Mouse embryonic fibroblasts explore the chemical suitability before spreading on a given substrate. We find this early phase of cell spreading to be characterized by transient adhesion patches with a typical mean size of (1.0 ± 0.4) µm and a lifetime of (33 ± 12) s. Eventually, these patches fuse to initiate extensive spreading of the cell. We monitor cell adhesion using reflection interference contrast and total internal reflection fluorescence microscopy. Digital time lapse movies are analysed employing spatio-temporal correlation functions of adhesion patterns. Correlation length and time can be scaled to obtain a master curve at the fusion point.


Assuntos
Adesão Celular/fisiologia , Movimento Celular/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Adesões Focais/fisiologia , Adesões Focais/ultraestrutura , Animais , Linhagem Celular , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA