Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Hyperthermia ; 37(1): 549-563, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32484019

RESUMO

Purpose: Thermal intervention is a potent sensitizer of cells to chemo- and radiotherapy in cancer treatment. Glioblastoma multiforme (GBM) is a potential clinical target, given the cancer's aggressive nature and resistance to current treatment options. The annular phased array (APA) technique employing electromagnetic waves in the radiofrequency (RF) range allows for localized temperature increase in deep seated target volumes (TVs). Reports on clinical applications of the APA technique in the brain are still missing. Ultrahigh field magnetic resonance (MR) employs higher frequencies than conventional MR and has potential to provide focal temperature manipulation, high resolution imaging and noninvasive temperature monitoring using an integrated RF applicator (ThermalMR). This work examines the applicability of RF applicator concepts for ThermalMR of brain tumors at 297 MHz (7.0 Tesla).Methods: Electromagnetic field (EMF) simulations are performed for clinically realistic data based on GBM patients. Two algorithms are used for specific RF energy absorption rate based thermal intervention planning for small and large TVs in the brain, aiming at maximum RF power deposition or RF power uniformity in the TV for 10 RF applicator designs.Results: For both TVs , the power optimization outperformed the uniformity optimization. The best results for the small TV are obtained for the 16 element interleaved RF applicator using an elliptical antenna arrangement with water bolus. The two row elliptical RF applicator yielded the best result for the large TV.Discussion: This work investigates the capacity of ThermalMR to achieve targeted thermal interventions in model systems resembling human brain tissue and brain tumors.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Imageamento por Ressonância Magnética/métodos , Ablação por Radiofrequência/métodos , Humanos
2.
MAGMA ; 33(1): 121-130, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31797228

RESUMO

OBJECTIVE: Design, implementation, evaluation and application of a quadrature birdcage radiofrequency (RF) resonator tailored for renal and cardiac sodium (23Na) magnetic resonance imaging (MRI) in rats at 9.4 T. MATERIALS AND METHODS: A low pass birdcage resonator (16 rungs, din = 62 mm) was developed. The transmission field (B1+) was examined with EMF simulations. The scattering parameter (S-parameter) and the quality factor (Q-factor) were measured. For experimental validation B1+-field maps were acquired with the double-angle method. In vivo sodium imaging of the heart (spatial resolution: (1 × 1 × 5) mm3) and kidney (spatial resolution: (1 × 1 × 10) mm3) was performed with a FLASH technique. RESULTS: The RF resonator exhibits RF characteristics, transmission field homogeneity and penetration that afford 23Na MR in vivo imaging of the kidney and heart at 9.4 T. For the renal cortex and medulla a SNRs of 8 and 13 were obtained and a SNRs of 14 and 15 were observed for the left and right ventricle. DISCUSSION: These initial results obtained in vivo in rats using the quadrature birdcage volume RF resonator for 23Na MRI permit dedicated studies on experimental models of cardiac and renal diseases, which would contribute to translational research of the cardiorenal syndrome.


Assuntos
Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Isótopos de Sódio , Animais , Calibragem , Desenho de Equipamento , Coração/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Miocárdio , Imagens de Fantasmas , Ondas de Rádio , Ratos , Razão Sinal-Ruído , Transdutores , Pesquisa Translacional Biomédica
3.
Magn Reson Med ; 80(2): 672-684, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29327365

RESUMO

PURPOSE: The aim of this study was to achieve millimeter spatial resolution sodium in vivo MRI of the human eye at 7 T using a dedicated six-channel transceiver array. We present a detailed description of the radiofrequency coil design, along with electromagnetic field and specific absorption ratio simulations, data validation, and in vivo application. METHODS: Electromagnetic field and specific absorption ratio simulations were performed. Transmit field uniformity was optimized by using a multi-objective genetic algorithm. Transmit field mapping was conducted using a phase-sensitive method. An in vivo feasibility study was carried out with 3-dimensional density-adapted projection reconstruction imaging technique. RESULTS: Measured transmit field distribution agrees well with the one obtained from simulations. The specific absorption ratio simulations confirm that the radiofrequency coil is safe for clinical use. Our radiofrequency coil is light and conforms to an average human head. High spatial resolution (nominal 1.4 and 1.0 mm isotropic) sodium in vivo images of the human eye were acquired within scan times suitable for clinical applications (∼ 10 min). CONCLUSIONS: Three most important eye compartments in the context of sodium physiology were clearly delineated in all of the images: the vitreous humor, the aqueous humor, and the lens. Our results provide encouragement for further clinical studies. The implications for research into eye diseases including ocular melanoma, cataract, and glaucoma are discussed. Magn Reson Med 80:672-684, 2018. © 2018 International Society for Magnetic Resonance in Medicine.


Assuntos
Olho/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Sódio/química , Adulto , Desenho de Equipamento , Feminino , Humanos , Masculino , Imagens de Fantasmas
4.
Magn Reson Med ; 78(4): 1533-1546, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27851881

RESUMO

PURPOSE: Proton radiation therapy (PRT) is a standard treatment of uveal melanoma. PRT patients undergo implantation of ocular tantalum markers (OTMs) for treatment planning. Ultra-high-field MRI is a promising technique for 3D tumor visualization and PRT planning. This work examines MR safety and compatibility of OTMs at 7.0 Tesla. METHODS: MR safety assessment included deflection angle measurements (DAMs), electromagnetic field (EMF) simulations for specific absorption rate (SAR) estimation, and temperature simulations for examining radiofrequency heating using a bow-tie dipole antenna for transmission. MR compatibility was assessed by susceptibility artifacts in agarose, ex vivo pig eyes, and in an ex vivo tumor eye using gradient echo and fast spin-echo imaging. RESULTS: DAM (α < 1 °) demonstrated no risk attributed to magnetically induced OTM deflection. EMF simulations showed that an OTM can be approximated by a disk, demonstrated the need for averaging masses of mave = 0.01 g to accommodate the OTM, and provided SAR0.01g,maximum = 2.64 W/kg (Pin = 1W) in OTM presence. A transfer function was derived, enabling SAR0.01g estimation for individual patient scenarios without the OTM being integrated. Thermal simulations revealed minor OTM-related temperature increase (δT < 15 mK). Susceptibility artifact size (<8 mm) and location suggest no restrictions for MRI of the nervus opticus. CONCLUSION: OTMs are not a per se contraindication for MRI. Magn Reson Med 78:1533-1546, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Imageamento por Ressonância Magnética/métodos , Melanoma/diagnóstico por imagem , Melanoma/radioterapia , Terapia com Prótons/normas , Tantálio/análise , Neoplasias Uveais/diagnóstico por imagem , Neoplasias Uveais/radioterapia , Animais , Temperatura Alta , Humanos , Segurança do Paciente , Imagens de Fantasmas , Terapia com Prótons/métodos , Suínos , Tantálio/química
5.
Magn Reson Med ; 77(6): 2381-2389, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27342430

RESUMO

PURPOSE: Myocardial effective relaxation time T2* is commonly regarded as a surrogate for myocardial tissue oxygenation. However, it is legitimate to assume that there are multiple factors that influence T2*. To this end, this study investigates the relationship between T2* and cardiac macromorphology given by left ventricular (LV) wall thickness and left ventricular radius, and provides interpretation of the results in the physiological context. METHODS: High spatio-temporally resolved myocardial CINE T2* mapping was performed in 10 healthy volunteers using a 7.0 Tesla (T) full-body MRI system. Ventricular septal wall thickness, left ventricular inner radius, and T2* were analyzed. Macroscopic magnetic field changes were elucidated using cardiac phase-resolved magnetic field maps. RESULTS: Ventricular septal T2* changes periodically over the cardiac cycle, increasing in systole and decreasing in diastole. Ventricular septal wall thickness and T2* showed a significant positive correlation, whereas the inner LV radius and T2* were negatively correlated. The effect of macroscopic magnetic field gradients on T2* can be considered minor in the ventricular septum. CONCLUSION: Our findings suggest that myocardial T2* is related to tissue blood volume fraction. Temporally resolved T2* mapping could be beneficial for myocardial tissue characterization and for understanding cardiac (patho)physiology in vivo. Magn Reson Med 77:2381-2389, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Função Ventricular Esquerda/fisiologia , Adulto , Feminino , Humanos , Masculino , Tamanho do Órgão/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
PLoS One ; 11(9): e0161863, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27598923

RESUMO

INTRODUCTION: The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. METHODS: Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. RESULTS: Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. CONCLUSION: Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.


Assuntos
Imageamento por Ressonância Magnética , Benchmarking , Campos Eletromagnéticos , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de Rádio
7.
Int J Hyperthermia ; 32(1): 63-75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26708630

RESUMO

Clinically established thermal therapies such as thermoablative approaches or adjuvant hyperthermia treatment rely on accurate thermal dose information for the evaluation and adaptation of the thermal therapy. Intratumoural temperature measurements have been correlated successfully with clinical end points. Magnetic resonance imaging is the most suitable technique for non-invasive thermometry avoiding complications related to invasive temperature measurements. Since the advent of MR thermometry two decades ago, numerous MR thermometry techniques have been developed, continuously increasing accuracy and robustness for in vivo applications. While this progress was primarily focused on relative temperature mapping, current and future efforts will likely close the gap towards quantitative temperature readings. These efforts are essential to benchmark thermal therapy efficiency, to understand temperature-related biophysical and physiological processes and to use these insights to set new landmarks for diagnostic and therapeutic applications. With that in mind, this review summarises and discusses advances in MR thermometry, providing practical considerations, pitfalls and technical obstacles constraining temperature measurement accuracy, spatial and temporal resolution in vivo. Established approaches and current trends in thermal therapy hardware are surveyed with respect to potential benefits for MR thermometry.


Assuntos
Hipertermia Induzida , Espectroscopia de Ressonância Magnética , Termometria/métodos , Humanos , Neoplasias/terapia , Termometria/instrumentação
8.
NMR Biomed ; 29(9): 1173-97, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-25706103

RESUMO

The objective of this study was to document and review advances and groundbreaking progress in cardiac and body MR at ultrahigh fields (UHF, B0 ≥ 7.0 T) with the goal to attract talent, clinical adopters, collaborations and resources to the biomedical and diagnostic imaging communities. This review surveys traits, advantages and challenges of cardiac and body MR at 7.0 T. The considerations run the gamut from technical advances to clinical opportunities. Key concepts, emerging technologies, practical considerations, frontier applications and future directions of UHF body and cardiac MR are provided. Examples of UHF cardiac and body imaging strategies are demonstrated. Their added value over the kindred counterparts at lower fields is explored along with an outline of research promises. The achievements of cardiac and body UHF-MR are powerful motivators and enablers, since extra speed, signal and imaging capabilities may be invested to overcome the fundamental constraints that continue to hamper traditional cardiac and body MR applications. If practical obstacles, concomitant physics effects and technical impediments can be overcome in equal measure, sophisticated cardiac and body UHF-MR will help to open the door to new MRI and MRS approaches for basic research and clinical science, with the lessons learned at 7.0 T being transferred into broad clinical use including diagnostics and therapy guiding at lower fields. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Técnicas de Imagem Cardíaca/instrumentação , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Imagem Corporal Total/instrumentação , Algoritmos , Técnicas de Imagem Cardíaca/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Imagem Corporal Total/métodos
9.
Magn Reson Med ; 75(6): 2553-65, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26183320

RESUMO

PURPOSE: To design, evaluate, and apply a bow tie antenna transceiver radiofrequency (RF) coil array tailored for cardiac MRI at 7.0 Tesla (T). METHODS: The radiofrequency (RF) coil array comprises 16 building blocks each containing a bow tie shaped λ/2-dipole antenna. Numerical simulations were used for transmission field homogenization and RF safety validation. RF characteristics were examined in a phantom study. The array's suitability for high spatial resolution two-dimensional (2D) CINE imaging and for real time imaging of the heart was examined in a volunteer study. RESULTS: The arrays transmission fields and RF characteristics are suitable for cardiac MRI at 7.0T. The coil performance afforded a spatial resolution as good as (0.8 × 0.8 × 2.5) mm(3) for segmented 2D CINE MRI at 7.0T which is by a factor of 12 superior versus standardized protocols used in clinical practice at 1.5T. The proposed transceiver array supports 1D acceleration factors of up to R = 6 without impairing image quality significantly. CONCLUSION: The 16-channel bow tie antenna transceiver array supports accelerated and high spatial resolution cardiac MRI. The array is compatible with multichannel transmission and provides a technological basis for future clinical assessment of parallel transmission techniques at 7.0 Tesla. Magn Reson Med 75:2553-2565, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/instrumentação , Imagem Cinética por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Adulto , Desenho de Equipamento , Feminino , Coração/diagnóstico por imagem , Humanos , Masculino , Imagens de Fantasmas , Razão Sinal-Ruído , Transdutores , Adulto Jovem
10.
Radiat Oncol ; 10: 201, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26391138

RESUMO

BACKGROUND: Glioblastoma multiforme is the most common and most aggressive malign brain tumor. The 5-year survival rate after tumor resection and adjuvant chemoradiation is only 10 %, with almost all recurrences occurring in the initially treated site. Attempts to improve local control using a higher radiation dose were not successful so that alternative additive treatments are urgently needed. Given the strong rationale for hyperthermia as part of a multimodal treatment for patients with glioblastoma, non-invasive radio frequency (RF) hyperthermia might significantly improve treatment results. METHODS: A non-invasive applicator was constructed utilizing the magnetic resonance (MR) spin excitation frequency for controlled RF hyperthermia and MR imaging in an integrated system, which we refer to as thermal MR. Applicator designs at RF frequencies 300 MHz, 500 MHz and 1GHz were investigated and examined for absolute applicable thermal dose and temperature hotspot size. Electromagnetic field (EMF) and temperature simulations were performed in human voxel models. RF heating experiments were conducted at 300 MHz and 500 MHz to characterize the applicator performance and validate the simulations. RESULTS: The feasibility of thermal MR was demonstrated at 7.0 T. The temperature could be increased by ~11 °C in 3 min in the center of a head sized phantom. Modification of the RF phases allowed steering of a temperature hotspot to a deliberately selected location. RF heating was monitored using the integrated system for MR thermometry and high spatial resolution MRI. EMF and thermal simulations demonstrated that local RF hyperthermia using the integrated system is feasible to reach a maximum temperature in the center of the human brain of 46.8 °C after 3 min of RF heating while surface temperatures stayed below 41 °C. Using higher RF frequencies reduces the size of the temperature hotspot significantly. CONCLUSION: The opportunities and capabilities of thermal magnetic resonance for RF hyperthermia interventions of intracranial lesions are intriguing. Employing such systems as an alternative additive treatment for glioblastoma multiforme might be able to improve local control by "fighting fire with fire". Interventions are not limited to the human brain and might include temperature driven targeted drug and MR contrast agent delivery and help to understand temperature dependent bio- and physiological processes in-vivo.


Assuntos
Hipertermia Induzida/métodos , Espectroscopia de Ressonância Magnética/métodos , Modelos Teóricos , Campos Eletromagnéticos , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/uso terapêutico , Física , Terapia por Radiofrequência
11.
PLoS One ; 10(1): e0117095, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25621491

RESUMO

PURPOSE: This study examines the subjective acceptance during UHF-CMR in a cohort of healthy volunteers who underwent a cardiac MR examination at 7.0T. METHODS: Within a period of two-and-a-half years (January 2012 to June 2014) a total of 165 healthy volunteers (41 female, 124 male) without any known history of cardiac disease underwent UHF-CMR. For the assessment of the subjective acceptance a questionnaire was used to examine the participants experience prior, during and after the UHF-CMR examination. For this purpose, subjects were asked to respond to the questionnaire in an exit interview held immediately after the completion of the UHF-CMR examination under supervision of a study nurse to ensure accurate understanding of the questions. All questions were answered with "yes" or "no" including space for additional comments. RESULTS: Transient muscular contraction was documented in 12.7% of the questionnaires. Muscular contraction was reported to occur only during periods of scanning with the magnetic field gradients being rapidly switched. Dizziness during the study was reported by 12.7% of the subjects. Taste of metal was reported by 10.1% of the study population. Light flashes were reported by 3.6% of the entire cohort. 13% of the subjects reported side effects/observations which were not explicitly listed in the questionnaire but covered by the question about other side effects. No severe side effects as vomiting or syncope after scanning occurred. No increase in heart rate was observed during the UHF-CMR exam versus the baseline clinical examination. CONCLUSIONS: This study adds to the literature by detailing the subjective acceptance of cardiovascular magnetic resonance imaging examinations at a magnetic field strength of 7.0T. Cardiac MR examinations at 7.0T are well tolerated by healthy subjects. Broader observational and multi-center studies including patient cohorts with cardiac diseases are required to gain further insights into the subjective acceptance of UHF-CMR examinations.


Assuntos
Coração/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Satisfação do Paciente , Inquéritos e Questionários , Adulto Jovem
12.
Invest Radiol ; 49(5): 260-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24651662

RESUMO

OBJECTIVES: This study was designed to examine the feasibility of ophthalmic magnetic resonance imaging (MRI) at 7 T using a local 6-channel transmit/receive radiofrequency (RF) coil array in healthy volunteers and patients with intraocular masses. MATERIALS AND METHODS: A novel 6-element transceiver RF coil array that makes uses of loop elements and that is customized for eye imaging at 7 T is proposed. Considerations influencing the RF coil design and the characteristics of the proposed RF coil array are presented. Numerical electromagnetic field simulations were conducted to enhance the RF coil characteristics. Specific absorption rate simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Phantom experiments were carried out to validate the electromagnetic field simulations and to assess the real performance of the proposed transceiver array. Certified approval for clinical studies was provided by a local notified body before the in vivo studies. The suitability of the RF coil to image the human eye, optical nerve, and orbit was examined in an in vivo feasibility study including (a) 3-dimensional (3D) gradient echo (GRE) imaging, (b) inversion recovery 3D GRE imaging, and (c) 2D T2-weighted fast spin-echo imaging. For this purpose, healthy adult volunteers (n = 17; mean age, 34 ± 11 years) and patients with intraocular masses (uveal melanoma, n = 5; mean age, 57 ± 6 years) were investigated. RESULTS: All subjects tolerated all examinations well with no relevant adverse events. The 6-channel coil array supports high-resolution 3D GRE imaging with a spatial resolution as good as 0.2 × 0.2 × 1.0 mm, which facilitates the depiction of anatomical details of the eye. Rather, uniform signal intensity across the eye was found. A mean signal-to-noise ratio of approximately 35 was found for the lens, whereas the vitreous humor showed a signal-to-noise ratio of approximately 30. The lens-vitreous humor contrast-to-noise ratio was 8, which allows good differentiation between the lens and the vitreous compartment. Inversion recovery prepared 3D GRE imaging using a spatial resolution of 0.4 × 0.4 × 1.0 mm was found to be feasible. T2-weighted 2D fast spin-echo imaging with the proposed RF coil afforded a spatial resolution of 0.25 × 0.25 × 0.7 mm. CONCLUSIONS: This work provides valuable information on the feasibility of ophthalmic MRI at 7 T using a dedicated 6-channel transceiver coil array that supports the acquisition of high-contrast, high-spatial resolution images in healthy volunteers and patients with intraocular masses. The results underscore the challenges of ocular imaging at 7 T and demonstrate that these issues can be offset by using tailored RF coil hardware. The benefits of such improvements would be in positive alignment with explorations that are designed to examine the potential of MRI for the assessment of spatial arrangements of the eye segments and their masses with the ultimate goal to provide imaging means for guiding treatment decisions in ophthalmological diseases.


Assuntos
Neoplasias Oculares/diagnóstico , Olho/patologia , Imageamento por Ressonância Magnética/instrumentação , Adulto , Idoso , Desenho de Equipamento , Olho/anatomia & histologia , Estudos de Viabilidade , Feminino , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Valores de Referência , Razão Sinal-Ruído , Adulto Jovem
13.
Magn Reson Med ; 72(1): 276-90, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23904404

RESUMO

PURPOSE: To design and evaluate a modular transceiver coil array with 32 independent channels for cardiac MRI at 7.0T. METHODS: The modular coil array comprises eight independent building blocks, each containing four transceiver loop elements. Numerical simulations were used for B1 (+) field homogenization and radiofrequency (RF) safety validation. RF characteristics were examined in a phantom study. The array's suitability for accelerated high spatial resolution two-dimensional (2D) FLASH CINE imaging of the heart was examined in a volunteer study. RESULTS: Transmission field adjustments and RF characteristics were found to be suitable for the volunteer study. The signal-to-noise intrinsic to 7.0T together with the coil performance afforded a spatial resolution of 1.1 × 1.1 × 2.5 mm(3) for 2D CINE FLASH MRI, which is by a factor of 6 superior to standardized CINE protocols used in clinical practice at 1.5T. The 32-channel transceiver array supports one-dimensional acceleration factors of up to R = 4 without impairing image quality significantly. CONCLUSION: The modular 32-channel transceiver cardiac array supports accelerated and high spatial resolution cardiac MRI. The array is compatible with multichannel transmission and provides a technological basis for future clinical assessment of parallel transmission techniques at 7.0T.


Assuntos
Coração , Imagem Cinética por Ressonância Magnética/instrumentação , Adulto , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Voluntários Saudáveis , Humanos , Aumento da Imagem/instrumentação , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Ondas de Rádio , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA