Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 13(42): 18799-809, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21971203

RESUMO

In this work we demonstrate vibrational spectroscopy of polyatomic ions that are trapped and sympathetically cooled by laser-cooled atomic ions. We use the protonated dipeptide tryptophan-alanine (HTyrAla(+)) as a model system, cooled by barium ions to less than 800 mK secular temperature. The spectroscopy is performed on the fundamental vibrational transition of a local vibrational mode at 2.74 µm using a continuous-wave optical parametric oscillator (OPO). Resonant IR multi-photon dissociation spectroscopy (R-IRMPD) (without the use of a UV laser) generates charged molecular fragments, which are sympathetically cooled and trapped, and subsequently released from the trap and counted. We measured the cross section for R-IRMPD under conditions of low intensity, and found it to be approximately two orders smaller than the vibrational excitation cross section. The observed rotational bandwidth of the vibrational transition is larger than the one expected from the combined effects of 300 K black-body temperature, conformer-dependent line shifts, and intermolecular vibrational relaxation broadening (J. Stearns et al., J. Chem. Phys., 2007, 127, 154322-154327). This indicates that as the internal energy of the molecule grows, an increase of the rotational temperature of the molecular ions well above room temperature (up to on the order of 1000 K), and/or an appreciable shift of the vibrational transition frequency (approx. 6-8 cm(-1)) occurs.


Assuntos
Dipeptídeos/química , Íons/química , Espectrofotometria Infravermelho , Bário/química , Fótons , Temperatura , Termodinâmica
2.
Phys Rev Lett ; 97(24): 243005, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17280279

RESUMO

Gas-phase singly protonated organic molecules of mass 410 Da (Alexa Fluor 350) have been cooled from ambient temperature to the hundred millikelvin range by Coulomb interaction with laser-cooled barium ions. The molecules were generated by an electrospray ionization source, transferred to and stored in a radio-frequency trap together with the atomic ions. Observations are well described by molecular dynamics simulations, which are used to determine the spatial distribution and thermal energy of the molecules. In one example, an ensemble of 830 laser-cooled 138Ba+ ions cooled 200 molecular ions to less than 115 mK. The demonstrated technique should allow a large variety of protonated molecules to be sympathetically cooled, including molecules of much higher mass, such as proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA