Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
PNAS Nexus ; 2(5): pgad149, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215630

RESUMO

White-matter injury in sickle-cell disease (SCD) includes silent cerebral infarction diagnosed by diffusion tensor imaging (DTI), a complication associated with cognitive dysfunction in children with SCD. The link between white-matter injury and cognitive dysfunction has not been fully elucidated. The goal of this study was to define whether cerebrovascular lesions and cognitive function in SCD are linked to neuroaxonal damage and astrocyte activation in humanized Townes' SCD mice homozygous for human sickle hemoglobin S (SS) and control mice homozygous for human normal hemoglobin A (AA). Mice underwent MRI with DTI and cognitive testing, and histology sections from their brains were stained to assess microstructural tissue damage, neuroaxonal damage, and astrocyte activation. Fractional anisotropy, showing microstructural cerebrovascular abnormalities identified by DTI in the white matter, was significantly associated with neuronal demyelination in the SS mouse brain. SS mice had reduced learning and memory function with a significantly lower discrimination index compared with AA control mice in the novel object recognition tests. Neuroaxonal damage in the SS mice was synchronously correlated with impaired neurocognitive function and activation of astrocytes. The interplay between astrocyte function and neurons may modulate cognitive performance in SCD.

2.
Sci Adv ; 8(26): eabm9138, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35767602

RESUMO

The up-regulation of kynurenine metabolism induces immunomodulatory responses via incompletely understood mechanisms. We report that increases in cellular and systemic kynurenine levels yield the electrophilic derivative kynurenine-carboxyketoalkene (Kyn-CKA), as evidenced by the accumulation of thiol conjugates and saturated metabolites. Kyn-CKA induces NFE2 like bZIP transcription factor 2- and aryl hydrocarbon receptor-regulated genes and inhibits nuclear factor κB- and NLR family pyrin domain containing 3-dependent proinflammatory signaling. Sickle cell disease (SCD) is a hereditary hemolytic condition characterized by basal inflammation and recurrent vaso-occlusive crises. Both transgenic SCD mice and patients with SCD exhibit increased kynurenine and Kyn-CKA metabolite levels. Plasma hemin and kynurenine concentrations are positively correlated, indicating that Kyn-CKA synthesis in SCD is up-regulated during pathogenic vascular stress. Administration of Kyn-CKA abrogated pulmonary microvasculature occlusion in SCD mice, an important factor in lung injury development. These findings demonstrate that the up-regulation of kynurenine synthesis and its metabolism to Kyn-CKA is an adaptive response that attenuates inflammation and protects tissues.

3.
Front Pharmacol ; 13: 880834, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620281

RESUMO

Activation of Nrf2, a major transcription factor that drives the antioxidant defense system, is an emerging therapeutic strategy in Sickle Cell Disease (SCD). In this study, transgenic Sickle Cell Anemia mice (SS mice) treated with CDDO-Methyl (CDDO-Me), a potent Nrf2 activator, showed reduced progression of hemolytic anemia with aging, but surprisingly also showed reduced endothelial function. Pulmonary vessels isolated from SS mice treated for 4 months with CDDO-Me displayed a diminished response to nitric oxide (NO)-induced vasodilation compared to littermates given vehicle. It is unclear what molecular mechanism underly the vascular impairment, however, our in vitro assays revealed that CDDO-Me induced the expression of the endothelin receptor (ETA and ETB) in vascular smooth muscle cells. Endothelin signaling is associated with increased vascular tone and vasoconstriction. This study underscores the importance of pre-clinical benefit-risk investigations of Nrf2 activating compounds which may be used to treat patients with SCD.

5.
Arterioscler Thromb Vasc Biol ; 41(2): 769-782, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267657

RESUMO

OBJECTIVE: Chronic hemolysis is a hallmark of sickle cell disease (SCD) and a driver of vasculopathy; however, the mechanisms contributing to hemolysis remain incompletely understood. Although XO (xanthine oxidase) activity has been shown to be elevated in SCD, its role remains unknown. XO binds endothelium and generates oxidants as a byproduct of hypoxanthine and xanthine catabolism. We hypothesized that XO inhibition decreases oxidant production leading to less hemolysis. Approach and Results: Wild-type mice were bone marrow transplanted with control (AA) or sickle (SS) Townes bone marrow. After 12 weeks, mice were treated with 10 mg/kg per day of febuxostat (Uloric), Food and Drug Administration-approved XO inhibitor, for 10 weeks. Hematologic analysis demonstrated increased hematocrit, cellular hemoglobin, and red blood cells, with no change in reticulocyte percentage. Significant decreases in cell-free hemoglobin and increases in haptoglobin suggest XO inhibition decreased hemolysis. Myographic studies demonstrated improved pulmonary vascular dilation and blunted constriction, indicating improved pulmonary vasoreactivity, whereas pulmonary pressure and cardiac function were unaffected. The role of hepatic XO in SCD was evaluated by bone marrow transplanting hepatocyte-specific XO knockout mice with SS Townes bone marrow. However, hepatocyte-specific XO knockout, which results in >50% diminution in circulating XO, did not affect hemolysis levels or vascular function, suggesting hepatocyte-derived elevation of circulating XO is not the driver of hemolysis in SCD. CONCLUSIONS: Ten weeks of febuxostat treatment significantly decreased hemolysis and improved pulmonary vasoreactivity in a mouse model of SCD. Although hepatic XO accounts for >50% of circulating XO, it is not the source of XO driving hemolysis in SCD.


Assuntos
Anemia Falciforme/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Eritrócitos/efeitos dos fármacos , Febuxostat/farmacologia , Hemodinâmica/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Xantina Oxidase/antagonistas & inibidores , Anemia Falciforme/sangue , Anemia Falciforme/enzimologia , Anemia Falciforme/fisiopatologia , Animais , Modelos Animais de Doenças , Eritrócitos/enzimologia , Fígado/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Artéria Pulmonar/enzimologia , Artéria Pulmonar/fisiopatologia , Função Ventricular/efeitos dos fármacos , Xantina Oxidase/genética , Xantina Oxidase/metabolismo
6.
Front Immunol ; 11: 1910, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973791

RESUMO

Emerging data indicate that free heme promotes inflammation in many different disease settings, including in sickle cell disease (SCD). Although free heme, proinflammatory cytokines, and cardiac hypertrophy are co-existing features of SCD, no mechanistic links between these features have been demonstrated. We now report significantly higher levels of IL-6 mRNA and protein in hearts of the Townes sickle cell disease (SS) mice (2.9-fold, p ≤ 0.05) than control mice expressing normal human hemoglobin (AA). We find that experimental administration of heme 50 µmoles/kg body weight induces IL-6 expression directly in vivo and induces gene expression markers of cardiac hypertrophy in SS mice. We administered heme intravenously and found that within three hours plasma IL-6 protein significantly increased in SS mice compared to AA mice (3248 ± 275 vs. 2384 ± 255 pg/ml, p ≤ 0.05). In the heart, heme induced a 15-fold increase in IL-6 transcript in SS mice heart compared to controls. Heme simultaneously induced other markers of cardiac stress and hypertrophy, including atrial natriuretic factor (Nppa; 14-fold, p ≤ 0.05) and beta myosin heavy chain (Myh7; 8-fold, p ≤ 0.05) in SS mice. Our experiments in Nrf2-deficient mice indicate that the cardiac IL-6 response to heme does not require Nrf2, the usual mediator of transcriptional response to heme for heme detoxification by heme oxygenase-1. These data are the first to show heme-induced IL-6 expression in vivo, suggesting that hemolysis may play a role in the elevated IL-6 and cardiac hypertrophy seen in patients and mice with SCD. Our results align with published evidence from rodents and humans without SCD that suggest a causal relationship between IL-6 and cardiac hypertrophy.


Assuntos
Anemia Falciforme/complicações , Cardiomegalia/etiologia , Heme/administração & dosagem , Interleucina-6/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Modelos Animais de Doenças , Feminino , Hemoglobina Falciforme/genética , Hemoglobina Falciforme/metabolismo , Hemólise , Humanos , Injeções Intravenosas , Interleucina-6/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Regulação para Cima
8.
Expert Rev Hematol ; 13(6): 645-653, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32362160

RESUMO

INTRODUCTION: In sickle cell disease (SCD), hemoglobin S (HbS) red blood cells (RBCs) are characteristically deformed and inflexible. Often breaking down in the circulation, they exhibit increased adhesive properties with the endothelium and activated neutrophils and platelets, increasing the risk of occlusion of the microcirculation. SCD is categorized into two sub-phenotypes: hyperhemolytic, associated with priapism, leg ulcers, pulmonary hypertension, and stroke, and high hemoglobin/viscosity, which may promote vaso-occlusion-associated pain, acute chest syndrome, and osteonecrosis. AREAS COVERED: The sub-phenotypes are not completely distinct. Hemolysis may trigger vaso-occlusion, contributing to vascular complications. Targeting P-selectin, a key mediator of cross-talk between hyperhemolysis and vaso-occlusion, may be beneficial for vascular and vaso-occlusion-associated complications. English-language articles from PubMed on the topic of SCD and vaso-occlusive crises (VOCs) were reviewed from 1 January 2000 to 1 January 2019 using the search terms 'sickle cell disease,' 'vaso-occlusive crises,' and 'selectin.' EXPERT OPINION: Besides targeting P-selectin, other strategies to counter VOCs and RBC sickling are being pursued. These include platelet inhibition to counter aggregation, intercellular adhesion, and thrombosis during VOCs; gene therapy to correct the homozygous missense mutation in the ß-globin gene, causing polymerization of HbS; L-glutamine, possibly reducing oxidative stress in sickled RBCs; and fetal hemoglobin inducers.


Assuntos
Síndrome Torácica Aguda , Doenças Vasculares , Síndrome Torácica Aguda/tratamento farmacológico , Síndrome Torácica Aguda/patologia , Síndrome Torácica Aguda/fisiopatologia , Feminino , Humanos , Masculino , Osteonecrose/tratamento farmacológico , Osteonecrose/patologia , Osteonecrose/fisiopatologia , Dor/tratamento farmacológico , Dor/patologia , Dor/fisiopatologia , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/patologia , Doenças Vasculares/fisiopatologia
9.
Exp Hematol ; 84: 19-28.e4, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32151553

RESUMO

Erythropoiesis in the bone marrow and spleen depends on intricate interactions between the resident macrophages and erythroblasts. Our study focuses on identifying the role of nuclear factor erythroid 2-related factor 2 (Nrf2) during recovery from stress erythropoiesis. To that end, we induced stress erythropoiesis in Nrf2+/+ and Nrf2-null mice and evaluated macrophage subsets known to support erythropoiesis and erythroid cell populations. Our results confirm macrophage and erythroid hypercellularity after acute blood loss. Importantly, Nrf2 depletion results in a marked numerical reduction of F4/80+/CD169+/CD11b+ macrophages, which is more prominent under the induction of stress erythropoiesis. The observed macrophage deficiency is concomitant to a significantly impaired erythroid response to acute stress erythropoiesis in both murine bone marrow and murine spleen. Additionally, peripheral blood reticulocyte count as a response to acute blood loss is delayed in Nrf2-deficient mice compared with age-matched controls (11.0 ± 0.6% vs. 14.8 ± 0.6%, p ≤ 0.001). Interestingly, we observe macrophage hypercellularity in conjunction with erythroid hyperplasia in the bone marrow during stress erythropoiesis in Nrf2+/+ controls, with both impaired in Nrf2-/- mice. We further confirm the finding of macrophage hypercellularity in another model of erythroid hyperplasia, the transgenic sickle cell mouse, characterized by hemolytic anemia and chronic stress erythropoiesis. Our results revealed the role of Nrf2 in stress erythropoiesis in the bone marrow and that macrophage hypercellularity occurs concurrently with erythroid expansion during stress erythropoiesis. Macrophage hypercellularity is a previously underappreciated feature of stress erythropoiesis in sickle cell disease and recovery from blood loss.


Assuntos
Células da Medula Óssea/metabolismo , Eritropoese , Macrófagos/metabolismo , Fator 2 Relacionado a NF-E2/deficiência , Baço/metabolismo , Estresse Fisiológico , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Células da Medula Óssea/patologia , Feminino , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/metabolismo , Baço/patologia
10.
Blood ; 135(13): 1044-1048, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32043112

RESUMO

Acute kidney injury (AKI) is a major clinical concern in sickle cell disease (SCD). Clinical evidence suggests that red cell alarmins may cause AKI in SCD, however, the sterile inflammatory process involved has hitherto not been defined. We discovered that hemopexin deficiency in SCD is associated with a compensatory increase in α-1-microglobulin (A1M), resulting in an up to 10-fold higher A1M-to-hemopexin ratio in SCD compared with healthy controls. The A1M-to-hemopexin ratio is associated with markers of hemolysis and AKI in both humans and mice with SCD. Studies in mice showed that excess heme is directed to the kidneys in SCD in a process involving A1M causing AKI, whereas excess heme in controls is transported to the liver as expected. Using genetic and bone marrow chimeric tools, we confirmed that hemopexin deficiency promotes AKI in sickle mice under hemolytic stress. However, AKI was blocked when hemopexin deficiency in sickle mice was corrected with infusions of purified hemopexin prior to the induction of hemolytic stress. This study identifies acquired hemopexin deficiency as a risk factor of AKI in SCD and hemopexin replacement as a potential therapy.


Assuntos
Injúria Renal Aguda/etiologia , Anemia Falciforme/complicações , Anemia Falciforme/genética , Suscetibilidade a Doenças , Hemopexina/deficiência , Injúria Renal Aguda/diagnóstico , Animais , Biópsia , Modelos Animais de Doenças , Progressão da Doença , Eritrócitos/metabolismo , Taxa de Filtração Glomerular , Heme/metabolismo , Humanos , Testes de Função Renal , Camundongos , Modelos Biológicos
11.
Blood Adv ; 3(23): 4104-4116, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31821458

RESUMO

Pulmonary and systemic vasculopathies are significant risk factors for early morbidity and death in patients with sickle cell disease (SCD). An underlying mechanism of SCD vasculopathy is vascular smooth muscle (VSM) nitric oxide (NO) resistance, which is mediated by NO scavenging reactions with plasma hemoglobin (Hb) and reactive oxygen species that can oxidize soluble guanylyl cyclase (sGC), the NO receptor. Prior studies show that cytochrome b5 reductase 3 (CYB5R3), known as methemoglobin reductase in erythrocytes, functions in VSM as an sGC heme iron reductase critical for reducing and sensitizing sGC to NO and generating cyclic guanosine monophosphate for vasodilation. Therefore, we hypothesized that VSM CYB5R3 deficiency accelerates development of pulmonary hypertension (PH) in SCD. Bone marrow transplant was used to create SCD chimeric mice with background smooth muscle cell (SMC)-specific tamoxifen-inducible Cyb5r3 knockout (SMC R3 KO) and wild-type (WT) control. Three weeks after completing tamoxifen treatment, we observed 60% knockdown of pulmonary arterial SMC CYB5R3, 5 to 6 mm Hg elevated right-ventricular (RV) maximum systolic pressure (RVmaxSP) and biventricular hypertrophy in SS chimeras with SMC R3 KO (SS/R3KD) relative to WT (SS/R3WT). RV contractility, heart rate, hematological parameters, and cell-free Hb were similar between groups. When identically generated SS/R3 chimeras were studied 12 weeks after completing tamoxifen treatment, RVmaxSP in SS/R3KD had not increased further, but RV hypertrophy relative to SS/R3WT persisted. These are the first studies to establish involvement of SMC CYB5R3 in SCD-associated development of PH, which can exist in mice by 5 weeks of SMC CYB5R3 protein deficiency.


Assuntos
Anemia Falciforme/complicações , Citocromos b5/deficiência , Hipertensão Pulmonar/fisiopatologia , Animais , Humanos , Camundongos
12.
Br J Haematol ; 187(5): 666-675, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31389006

RESUMO

Haemolysis is a major feature of sickle cell disease (SCD) that contributes to organ damage. It is well established that haem, a product of haemolysis, induces expression of the enzyme that degrades it, haem oxygenase-1 (HMOX1). We have also shown that haem induces expression of placental growth factor (PGF), but the organ specificity of these responses has not been well-defined. As expected, we found high level expression of Hmox1 and Pgf transcripts in the reticuloendothelial system organs of transgenic sickle cell mice, but surprisingly strong expression in the heart (P < 0·0001). This pattern was largely replicated in wild type mice by intravenous injection of exogenous haem. In the heart, haem induced unexpectedly strong mRNA responses for Hmox1 (18-fold), Pgf (4-fold), and the haem transporter Slc48a1 (also termed Hrg1; 2·4-fold). This was comparable to the liver, the principal known haem-detoxifying organ. The NFE2L2 (also termed NRF2) transcription factor mediated much of the haem induction of Hmox1 and Hrg1 in all organs, but less so for Pgf. Our results indicate that the heart expresses haem response pathway genes at surprisingly high basal levels and shares with the liver a similar transcriptional response to circulating haem. The role of the heart in haem response should be investigated further.


Assuntos
Anemia Falciforme/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/biossíntese , Heme/farmacologia , Proteínas de Membrana/biossíntese , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Crescimento Placentário/biossíntese , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Anemia Falciforme/patologia , Animais , Feminino , Heme Oxigenase-1/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fator de Crescimento Placentário/genética
13.
Free Radic Biol Med ; 143: 300-308, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31408727

RESUMO

Free heme activates erythroblasts to express and secrete Placenta Growth Factor (PlGF), an angiogenic peptide of the VEGF family. High circulating levels of PlGF have been associated in experimental animals and in patients with sickle cell disease with echocardiographic markers of pulmonary hypertension, a life-limiting complication associated with more intense hemolysis. We now show that the mechanism of heme regulation of PlGF requires the contribution of the key antioxidant response regulator NRF2. Mimicking the effect of heme, the NRF2 agonist sulforaphane stimulates the PlGF transcript level nearly 30-fold in cultured human erythroblastoid cells. Heme and sulforaphane also induce transcripts for NRF2 itself, its partners MAFF and MAFG, and its competitor BACH1. Furthermore, heme induction of the PlGF transcript is significantly diminished by the NRF2 inhibitor brusatol and by siRNA knockdown of the NRF2 and/or MAFG transcription factors. Chromatin immunoprecipitation experiments show that heme induces NRF2 to bind directly to the PlGF promoter region. In complementary in vivo experiments, mice injected with heme show a significant increase in their plasma PlGF protein as early as 3 h after treatment. Our results reveal an important mechanism of PlGF regulation, adding to the growing literature that supports the pivotal importance of the NRF2 axis in the pathobiology of sickle cell disease.


Assuntos
Elementos de Resposta Antioxidante/genética , Antioxidantes/metabolismo , Regulação da Expressão Gênica , Heme/farmacologia , Fator de Transcrição MafG/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Fator de Crescimento Placentário/genética , Animais , Feminino , Fator de Transcrição MafG/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Fator de Crescimento Placentário/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais
14.
Oxid Med Cell Longev ; 2019: 3765643, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428225

RESUMO

Oxidative stress is a key feature in the pathophysiology of sickle cell disease. Endurance training has been shown to reduce oxidative stress in the heart and the liver of sickle mice. However, the effects of endurance training on skeletal muscles, which are major producers of reactive oxygen species during exercise, are currently unknown. The aim of this study was to evaluate the effect of sickle genotype on prooxidant/antioxidant response to individualized endurance training in skeletal muscles of sickle mice. Healthy and homozygous Townes sickle mice were divided into trained or sedentary groups. Maximal aerobic speed and V̇O2 peak were determined using an incremental test on a treadmill. Trained mice ran at 40% to 60% of maximal aerobic speed, 1 h/day, 5 days/week for 8 weeks. Oxidative stress markers, prooxidant/antioxidant response, and citrate synthase enzyme activities were assessed in the gastrocnemius, in the plantaris, and in the soleus muscles. Maximal aerobic speed and V̇O2 peak were significantly reduced in sickle compared to healthy mice (-57% and -17%; p < 0.001). NADPH oxidase, superoxide dismutase, and catalase activities significantly increased after training in the gastrocnemius of sickle mice only. A similar trend was observed for citrate synthase activity in sickle mice (p = 0.06). In this study, we showed an adaptive response to individualized endurance training on the prooxidant/antioxidant balance in the gastrocnemius, but neither in the plantaris nor in the soleus of trained sickle mice, suggesting an effect of sickle genotype on skeletal muscle response to endurance treadmill training.


Assuntos
Músculo Esquelético/metabolismo , Estresse Oxidativo , Condicionamento Físico Animal , Anemia Falciforme/genética , Anemia Falciforme/patologia , Anemia Falciforme/veterinária , Animais , Catalase/metabolismo , Citrato (si)-Sintase/metabolismo , Camundongos , Camundongos Transgênicos , NADPH Oxidases/metabolismo , Consumo de Oxigênio , Superóxido Dismutase/metabolismo , Regulação para Cima , Xantina Oxidase/metabolismo
16.
Sleep Breath ; 23(1): 333-339, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30159633

RESUMO

PURPOSE: Patients with sickle cell disease (SCD) regularly experience abnormal sleep, characterized by frequent arousals and reduced total sleep time. However, obstructive sleep apnea syndrome (OSAS) is a common comorbidity of SCD, making it unclear whether the disease per se is impacting sleep, or sleep disruption is secondary to the presence of OSAS. Thus, we assessed sleep, independent of OSAS, using a mouse model of SCD. METHODS: Sleep was compared between 10-to-12-week-old Townes knockout-transgenic mice with the sickle cell phenotype SS (n = 6) and Townes mice with sickle cell trait AS (n = 6; control). The mice underwent chronic polysomnographic electrode implantation (4EEG/2EMG) to assess sleep architecture. RESULTS: The SS mice had significantly lower hemoglobin concentration compared to control AS mice (7.3 ± 1.3 vs. 12.9 ± 1.7 g/dL; p < 0.01), consistent with the expected SCD phenotype. SS mice exhibited significantly decreased total NREM sleep time (45.0 ± 0.7 vs. 53.0 ± 1.3% 24 h sleep time; p < 0.01), but no change in total REM sleep time compared to the AS mice. The SS mice took longer to resume sleep after a wake period compared to the AS mice (3.2 ± 0.3 min vs. 1.9 ± 0.2 min; p < 0.05). Unexpectedly, SS mice experienced fewer arousals compared to AS mice (19.0 ± 0.9 vs. 23.3 ± 2.1 arousals/h of sleep; p = 0.031). CONCLUSIONS: The presence of decreased total NREM sleep associated with reduced arousals, in the absence of OSAS, suggests a distinctive underlying sleep phenotype in a mouse model of SCD.


Assuntos
Anemia Falciforme/genética , Modelos Animais de Doenças , Fenótipo , Apneia Obstrutiva do Sono/genética , Privação do Sono/genética , Animais , Nível de Alerta/genética , Hemoglobinometria , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Polissonografia , Traço Falciforme/genética , Sono de Ondas Lentas/genética , Vigília/genética
17.
Nat Biomed Eng ; 2: 453-463, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30533277

RESUMO

Alterations in the mechanical properties of erythrocytes occurring in inflammatory and hematologic disorders such as sickle cell disease (SCD) and malaria often lead to increased endothelial permeability, haemolysis, and microvascular obstruction. However, the associations among these pathological phenomena remain unknown. Here, we report a perfusable, endothelialized microvasculature-on-a-chip featuring an interpenetrating-polymer-network hydrogel that recapitulates the stiffness of blood-vessel intima, basement membrane self-deposition and self-healing endothelial barrier function for longer than 1 month. The microsystem enables the real-time visualization, with high spatiotemporal resolution, of microvascular obstruction and endothelial permeability under physiological flow conditions. We found how extracellular heme, a hemolytic byproduct, induces delayed but reversible endothelial permeability in a dose-dependent manner, and demonstrate that endothelial interactions with SCD or malaria-infected erythrocytes cause reversible microchannel occlusion and increased in situ endothelial permeability. The microvasculature-on-a-chip enables mechanistic insight into the endothelial barrier dysfunction associated with SCD, malaria and other inflammatory and haematological diseases.

18.
Br J Haematol ; 182(2): 271-275, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29923176

RESUMO

Acute chest syndrome (ACS) mortality in sickle cell disease (SCD) rises sharply in young adult patients and mechanism-based prophylaxis is lacking. In SCD, haem oxygenase-1 (HO-1) declines with age and ACS is associated with low HO-1. To test if enhanced HO-1 can reduce ACS mortality, young SCD mice were treated with D3T (3H-1,2-dithiole-3-thione), an activator of nuclear-factor erythroid 2 like 2, which controls HO-1 expression, for 3 months. Following haem-induced ACS, all vehicle-treated mice succumbed to severe lung injury, while D3T-treated mice had significantly improved survival. Blocking HO-1 activity abrogated the D3T effect. Thus HO-1 may be targeted to reduce ACS severity in adult patients.


Assuntos
Síndrome Torácica Aguda/prevenção & controle , Fator 2 Relacionado a NF-E2/fisiologia , Síndrome Torácica Aguda/induzido quimicamente , Animais , Hematínicos/farmacologia , Heme Oxigenase-1/metabolismo , Hemina/toxicidade , Camundongos Transgênicos , Oxigênio/sangue , Tionas/farmacologia , Tiofenos/farmacologia
19.
Blood Cells Mol Dis ; 69: 45-52, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28624257

RESUMO

Chronic systemic inflammation is a pathophysiological feature of sickle cell disease (SCD). Considering that regular exercise exerts multiple beneficial health effects including anti-inflammatory actions, we investigated whether a treadmill training program could minimize the inflammatory state in transgenic sickle cell (SS) mice. To test this hypothesis, SS mice were subjected to a treadmill training protocol of 1h/day, 5days a week for 8weeks. Exercise training increased the percent of venous oxyhemoglobin and sharply decreased the percent of carboxyhemoglobin suggesting that exercise training may limit the proportion of erythrocytes that were deoxygenated in the venous circulation. Exercise training attenuated systemic inflammation as attested by a significant drop in white blood cell (WBC) count and plasma Th1/Th2 cytokine ratio. There was reduction in interleukin-1ß and endothelin-1 mRNA expression in trained sickle mice. The spleen/body mass ratio was significantly decreased in trained sickle mice and there was a strong correlation between the magnitude of congestion and the relative spleen mass in all animals (trained and untrained). We conclude that moderate intensity exercise training, without any noticeable complications, may be associated with limited baseline blood deoxygenation and inflammation in sickle cell mice, and reduce sequestration of sickle erythrocytes/congestion in the spleen.


Assuntos
Anemia Falciforme/patologia , Inflamação/patologia , Condicionamento Físico Animal , Anemia Falciforme/sangue , Anemia Falciforme/genética , Animais , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Índices de Eritrócitos , Genótipo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Baço/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA