Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(28): 10784-10793, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39027300

RESUMO

We report metal-free organic 1,2-diketones that exhibit fast and highly efficient room-temperature phosphorescence (RTP) with high colour purity under various conditions, including solutions. RTP quantum yields reached 38.2% in solution under Ar, 54% in a polymer matrix in air, and 50% in crystalline solids in air. Moreover, the narrowband RTP consistently dominated the steady-state emission, regardless of the molecular environment. Detailed mechanistic studies using ultrafast spectroscopy, single-crystal X-ray structure analysis, and theoretical calculations revealed picosecond intersystem crossing (ISC) followed by RTP from a planar conformation. Notably, the phosphorescence rate constant k p was unambiguously established as ∼5000 s-1, which is comparable to that of platinum porphyrins (representative heavy-metal phosphor). This inherently large k p enabled the high-efficiency RTP across diverse molecular environments, thus complementing the streamlined persistent RTP approach. The mechanism behind the photofunction has been elucidated as follows: (1) the large k p is due to efficient intensity borrowing of the T1 state from the bright S3 state, (2) the rapid ISC occurs from the S1 to the T3 state because these states are nearly isoenergetic and have a considerable spin-orbit coupling, and (3) the narrowband emission results from the minimal geometry change between the T1 and S0 states. Such mechanistic understanding based on molecular orbitals, as well as the structure-RTP property relationship study, highlighted design principles embodied by the diketone planar conformer. The fast RTP strategy enables development of organic phosphors with emissions independent of environmental conditions, thereby offering alternatives to precious-metal based phosphors.

2.
Chem Sci ; 14(20): 5302-5308, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37234907

RESUMO

The phenomenon of crystal melting by light irradiation, known as photo-induced crystal-to-liquid transition (PCLT), can dramatically change material properties with high spatiotemporal resolution. However, the diversity of compounds exhibiting PCLT is severely limited, which hampers further functionalisation of PCLT-active materials and the fundamental understandings of PCLT. Here, we report on heteroaromatic 1,2-diketones as the new class of PCLT-active compounds, whose PCLT is based on conformational isomerisation. In particular, one of the diketones demonstrates luminescence evolution prior to crystal melting. Thus, the diketone crystal exhibits dynamic multistep changes in the luminescence colour and intensity during continuous ultraviolet irradiation. This luminescence evolution can be ascribed to the sequential PCLT processes of crystal loosening and conformational isomerisation before macroscopic melting. Single-crystal X-ray structural analysis, thermal analysis, and theoretical calculations of two PCLT-active and one inactive diketones revealed weaker intermolecular interactions for the PCLT-active crystals. In particular, we observed a characteristic packing motif for the PCLT-active crystals, consisting of an ordered layer of diketone core and a disordered layer of triisopropylsilyl moieties. Our results demonstrate the integration of photofunction with PCLT, provide fundamental insights into the melting process of molecular crystals, and will diversify the molecular design of PCLT-active materials beyond classical photochromic scaffolds such as azobenzenes.

3.
Polymers (Basel) ; 15(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36987219

RESUMO

Although the supramolecular structure of porphyrin polymers on flat surfaces (i.e., mica and HOPG) has been extensively studied, the self-assembly arrays of porphyrin polymers on the SWNT (as curved nanocarbon surfaces) have yet to be fully identified and/or investigated, especially using microscopic imaging techniques, i.e., scanning tunneling microscopy (STM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). This study reports the identification of the supramolecular structure of poly-[5,15-bis-(3,5-isopentoxyphenyl)-10,20-bis ethynylporphyrinato]-zinc (II) on the SWNT surface using mainly AFM and HR-TEM microscopic imaging techniques. After synthesizing around >900 mer of porphyrin polymer (via Glaser-Hay coupling); the as-prepared porphyrin polymer is then non-covalently adsorbed on SWNT surface. Afterward, the resultant porphyrin/SWNT nanocomposite is then anchored with gold nanoparticles (AuNPs), which are used as a marker, via coordination bonding to produce a porphyrin polymer/AuNPs/SWNT hybrid. The polymer, AuNPs, nanocomposite, and/or nanohybrid are characterized using 1H-NMR, mass spectrometry, UV-visible spectroscopy, AFM, as well as HR-TEM measuring techniques. The self-assembly arrays of porphyrin polymers moieties (marked with AuNPs) prefer to form a coplanar well-ordered, regular, repeated array (rather than wrapping) between neighboring molecules along the polymer chain on the tube surface. This will help with further understanding, designing, and fabricating novel supramolecular architectonics of porphyrin/SWNT-based devices.

4.
Chem Sci ; 12(43): 14363-14368, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34880986

RESUMO

Achieving organic room-temperature phosphorescence (RTP) in a solvent-free liquid state is a challenging task because the liquid state provides a less rigid environment than the crystal. Here, we report that an unsymmetrical heteroaromatic 1,2-diketone forms an organic RTP liquid. This diketone exists as a kinetically stable supercooled liquid, which resists crystallisation even under pricking or shearing stresses, and remains as a liquid for several months. The unsymmetrical diketone core is flexible, with eight distinct conformers possible, which prevents nucleation and growth for the liquid-solid transition. Interestingly, the thermodynamically stable crystalline solid-state was non-emissive. Thus, the RTP of the diketone was found to be liquiefaction-induced. Single-crystal X-ray structure analysis revealed that the diminished RTP of the crystal is due to insufficient intermolecular interactions and restricted access to an emissive conformer. Our work demonstrates that flexible unsymmetrical skeletons are promising motifs for bistable liquid-solid molecular systems, which are useful for the further development of stimuli-responsive materials that use phase transitions.

5.
Front Chem ; 9: 812593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096775

RESUMO

Modulating the stimulus-responsiveness of a luminescent crystal is challenging owing to the complex interdependent nature of its controlling factors, such as molecular structure, molecular conformation, crystal packing, optical properties, and amorphization behavior. Herein, we demonstrate a halogen-exchange approach that disentangles this problem, thereby realizing the modulation of room-temperature phosphorescence-to-phosphorescence mechanochromism. Replacing the bromine atoms in a brominated thienyl diketone with chlorine atoms afforded isostructural crystals; i.e., molecules with different halogen atoms exhibited the same molecular conformation and crystal packing. Consequently, amorphization behavior toward mechanical stimulation was also the same, and the phosphorescence of amorphous states originated from the same conformer of each diketone. In contrast, the phosphorescence properties of each conformer were modulated differently, which is ascribable to heavy atom effects, resulting in the modulation of the mechanochromism. Thus, halogen exchange is a promising approach for modulating the stimulus-responsive photofunctions of crystals involving spin-forbidden processes.

6.
Chem Commun (Camb) ; 56(50): 6810-6813, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32432246

RESUMO

The room-temperature phosphorescence (RTP) of metal-free organic crystals is normally quenched by mechanical stimulation. Herein, we demonstrate the opposite mechanoresponse of turn-on RTP. A desymmetrization of a C2-symmetric 1,2-diketone creates space for molecular motion in the crystal, quenching the RTP from the crystal while maintaining that from the amorphous solid.

7.
Chirality ; 32(3): 345-352, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31909860

RESUMO

This work reports confirmation of the experimental assignment of the absolute-handedness chirality of single-walled carbon nanotubes (SWNTs). This was achieved by applying the scanning tunneling microscopy (STM) imaging technique to a supramolecular composite consisting of a metalized porphyrin derivative (nickel-5,15-bisdodecylporphyrin [Ni-BDP]) affixed to the surfaces of chiral-concentrated SWNTs (with right-handed helix P- and left-handed helix M-). On the basis of the handedness chirality, different chiral supramolecular structures of Ni-BDP were observed on the surfaces of the two SWNT enantiomers. The incorporation of a metal center into the porphyrin ring did not significantly affect the SWNT absolute-handedness chirality assignment, the large pi-system porphyrin ring being the crucial factor. These findings will effectively pave the way towards the clear selective synthesis, separation, chemistry, and applications of SWNT enantiomers.

8.
Chemistry ; 26(16): 3633-3640, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-31880373

RESUMO

Facile redox-induced aromatic-antiaromatic interconversions were accomplished by using ß-tetracyano-21,23-dithiaporphyrin (CN4 S2 Por). Introduced cyano groups not only increased the reduction potential of the porphyrin core but also stabilized the antiaromatic isophlorin (CN4 S2 Iph) by π conjugation. The reduction of CN4 S2 Por with hydrazine in polar solvents quantitatively affords CN4 S2 Iph, even under ambient conditions. CN4 S2 Iph retains a nearly planar conformation and exhibits considerable antiaromaticity. Aerobic oxidation of CN4 S2 Iph to CN4 S2 Por occurs in nonpolar solvents. This study was conducted to contribute to the understanding of the structure-antiaromaticity relationship.

9.
Nanoscale ; 11(47): 22724-22729, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31750493

RESUMO

The original single-molecule rectifier proposed by Aviram and Ratner is based on a donor-σ-acceptor structure, in which σ functions as the insulator to disconnect the π electronic systems of the two parts. However, there have been no reports on experimentally demonstrated highly efficient single-molecule rectifiers based on this mechanism. In this paper, we demonstrate single-molecule rectifiers with perpendicularly connected metal porphyrin-imide dyads. Our proposed molecule rectifiers use hydroxyl groups at both ends as weak anchoring groups. Measurements of the single-molecule current-voltage characteristics of these molecules clearly show that the rectification ratio reached a high value of 14 on average. Moreover, the ratio could be tuned by changing the central metal in the porphyrin core. All of these features can be explained by the energy-level shift of the molecular orbital using a model with three electronic parts.

10.
Chemistry ; 25(13): 3240-3243, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609157

RESUMO

Dinuclear rare-earth (TbIII , YIII ) triple-decker complexes with a fused diporphyrin (FP) and two tetraphenylporphyrin (TPP) ligands were synthesized in neutral, dianionic, and diprotonated forms. The neutral forms have large open shell biradical character, as determined from the temperature dependency of the magnetic susceptibility measurements and theoretical calculations. The coupling value (J=-1.4 kcal mol-1 , -487 cm-1 ) of the radical centers in the neutral form of the YIII complex indicates weak pairing interactions. Theoretical calculations on the neutral form reveal a significant biradical character (y=68 %). Furthermore, the TbIII complex exhibits multi-redox states, having more than eight clear peaks in the voltammetry curves. The optical (3700 nm, 0.33 eV) and electrochemical measurements (3400 nm, 0.36 eV) indicate that the neutral form has very small HOMO-LUMO energy gap. Despite the large biradical character, the neutral complexes are thermally stable and do not decompose on heating at 120 °C. These complexes with unique characteristics are promising candidates for use in molecular electronics, optics, and spintronics.

11.
RSC Adv ; 9(48): 28135-28145, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35530484

RESUMO

This work mainly reports the observation of novel supramolecular structures of TbIII-5,15-bisdodecylporphyrin (BDP, C12P) double-decker complexes on the surfaces of single-walled carbon nanotubes (SWNTs) performed by scanning tunneling microscopy under an ultra-high vacuum and low temperature, atomic force microscopy, scanning electron microscopy coupled with energy dispersive spectroscopy, and ultraviolet-visible spectroscopy. The molecules formed a well-ordered self-assembled helix-shaped array with regular periodicity on the tube surface. Additionally, some magnetic properties of the BDP-molecule as well as the resulting BDP-SWNT composites were investigated by superconducting quantum interference measurements. The molecule exhibits single-molecule magnetic (SMM) properties and the composite's magnetization increases almost linearly with decreasing temperature which is possibly due to the coupling between porphyrin molecules and SWNTs. Consequently, this may enable the development of more advanced spintronic devices based on porphyrin-nanocarbon composites.

12.
Chemistry ; 25(8): 1941-1948, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30395702

RESUMO

Supramolecular structures of organic molecules on planar nanocarbon surfaces, such as highly oriented pyrolytic graphite (HOPG), have been extensively studied and the factors that control them are generally well-established. In contrast, the properties of supramolecular structures on curved nanocarbon surfaces like carbon nanotubes remain challenging to predict and/or to understand. This paper reports an investigation into the first study of the supramolecular structures of 5,15-bisdodecylporphyrin (C12P) on chiral, concentrated single-walled carbon nanotubes (SWNTs; with right-handed helix P- and left-handed helix M-) surfaces using STM. Furthermore, the study is the first of its kind to experimentally assign the absolute-handedness chirality of SWNTs, as well as to understand their effect on the supramolecular structures of organic molecules on their surfaces. Interestingly, these SWNT enantiomers resulted in supramolecular structures of opposite chirality based on the handedness chirality. With molecular modelling, we predicted the absolute-handedness chirality of SWNTs, before demonstrating this experimentally.

13.
Dalton Trans ; 48(21): 7074-7079, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30346022

RESUMO

In this study, organic solvent-dispersible nanoparticles of an FeII-1,2,4-triazole spin-crossover complex were synthesized. On mixing the suspension of the spin-crossover nanoparticles with a solution of single-walled carbon nanotubes (SWCNTs), the nanoparticles were strongly adsorbed on the hydrophobic SWCNT bundles, resulting in hybrid network structures. Variable temperature DC electrical conductivity measurements of the hybrid network thin films demonstrated that the conductivities of the composite films were switched by the spin transition of the nanoparticles.

14.
Org Lett ; 20(23): 7442-7446, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30412413

RESUMO

A palladium-catalyzed double carbonylative cyclization of benzoins has been developed, which realizes the synthesis of bis-ester-bridged stilbenes just in two steps from aldehydes. Thus, the obtained fully fused tetracyclic π-systems have a pyrano[3,2- b]pyran-2,6-dione (PPD) core on their center, showing two reversible reductions at low potentials. In addition, their photoluminescence properties are strikingly affected by the aromatic rings fused to the PPD core; bis- thieno-fused PPDs are found to be excellent fluorophores with quantum yields up to 0.98.

15.
Nanoscale ; 10(41): 19409-19417, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30307449

RESUMO

The first step towards the synthesis of single-molecule magnet (SMM)-based spintronics devices is the organization and manipulation of magnetic molecules on surfaces. Our previous studies on bulk crystals demonstrated that protonated porphyrinato double-decker complexes [Tb(Hoep)(oep)] (oep = 2,3,7,8,12,13,17,18-octaethylporphyrinato) are not SMMs; however, once a hydrogen is removed to produce their neutral radical forms, [Tb(oep)2], they convert to SMMs. These intriguing properties encouraged us to examine the electronic/spin properties of these complexes and their chemical conversion ability after their transfer onto a metal substrate, similar to the environment required for the practical application of SMMs. Herein, we conducted a single-molecule-scale conversion of the protonated bis(porphyrinato)terbium(iii) double-decker complex [Tb(Hoep)(oep)], whose hepta-coordinated terbium ion changes into octa-coordinated [Tb(oep)2] on detaching a hydrogen atom by scanning tunnelling microscopy. This conversion can be caused by the injection of tunnelling electrons of energy 1.5-2.5 eV. We confirmed the conversion by analysing the topographic image and the spin state of the molecule. The latter was achieved by examining the Kondo resonance, which originated from the screening of the molecular spin by the conduction electrons of the metal. The Kondo resonance was not observed for [Tb(Hoep)(oep)] but was observed for the converted species, which agrees well with a model containing the [Tb(oep)2] molecule and Kondo resonance originating from the π-electron spin of the porphyrin ligand. Even though it is not possible to provide complete evidence of the SMM properties of the transferred molecule, we have demonstrated a possible path to realize the switch-on SMM properties of a single molecule.

16.
ACS Omega ; 3(6): 6476-6482, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023949

RESUMO

Three tobacco types (Burley, Flue Cured, and Oriental) and eight cigarette brands were unequivocally identified using an electronic nose formed by only three sensors based on a single novel conducting polymer (PF-BTB) doped with different porphyrins (H2TPP, H2TPFP, and H2BTBOP). The synthesis and characterization of the polymer are also discussed. Small changes in the porphyrin structure caused significant changes in the electrical conductance response patterns of the sensors upon exposure to complex chemical matrixes, representing a novel approach for tuning the selectivity of chemiresistive sensors for e-nose application. This e-nose is fast, cheap, reliable, can be easily operated, and could be a valuable tool for border agents fighting cigarette smuggling around the world, helping them prevent losses of millions in tax revenues and sales.

17.
Nat Commun ; 9(1): 2693, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30002369

RESUMO

In contrast to AI hardware, neuromorphic hardware is based on neuroscience, wherein constructing both spiking neurons and their dense and complex networks is essential to obtain intelligent abilities. However, the integration density of present neuromorphic devices is much less than that of human brains. In this report, we present molecular neuromorphic devices, composed of a dynamic and extremely dense network of single-walled carbon nanotubes (SWNTs) complexed with polyoxometalate (POM). We show experimentally that the SWNT/POM network generates spontaneous spikes and noise. We propose electron-cascading models of the network consisting of heterogeneous molecular junctions that yields results in good agreement with the experimental results. Rudimentary learning ability of the network is illustrated by introducing reservoir computing, which utilises spiking dynamics and a certain degree of network complexity. These results indicate the possibility that complex functional networks can be constructed using molecular devices, and contribute to the development of neuromorphic devices.


Assuntos
Técnicas Eletroquímicas/métodos , Nanotubos de Carbono/química , Redes Neurais de Computação , Compostos de Tungstênio/química , Algoritmos , Encéfalo/citologia , Encéfalo/fisiologia , Simulação por Computador , Técnicas Eletroquímicas/instrumentação , Humanos , Microscopia de Força Atômica , Modelos Neurológicos , Neurônios/fisiologia
18.
Chem Asian J ; 13(13): 1692-1698, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29575725

RESUMO

Molecular structures for three oxidation forms (anion, radical, and cation) of terbium(III) bis(porphyrinato) double-decker complexes have been systematically studied. We found that the redox state controls the azimuthal rotation angle (φ) between the two porphyrin macrocycles. For [TbIII (tpp)2 ]n (tpp: tetraphenylporphyrinato, n=-1, 0, and +1), φ decreases at each stage of the oxidation process. The decrease in φ is due to the higher steric repulsion between the phenyl rings on the porphyrin macrocycle and the ß hydrogen atoms on the other porphyrin macrocycle, which results from the shorter interfacial distance between the two porphyrin macrocycles. Conversely, φ=45° for both [TbIII (oep)2 ]-1 and [TbIII (oep)2 ]0 (oep: octaethylporphyrinato), but φ=36° for [TbIII (oep)2 ]+1 . Theoretical calculations suggest that the smaller azimuthal rotation angle of the cation form is due to the electronic interaction in the doubly oxidized ligand system.

19.
Top Curr Chem (Cham) ; 375(5): 79, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28875434

RESUMO

This review highlights molecular design for nonlinear and nonsymmetric single-molecule electronic properties such as rectification, negative differential resistance, and switching, which are important components of future single-molecule information processing devices. Perspectives on integrated "molecular circuits" are also provided. Nonlinear and nonsymmetric single-molecule electronics can be designed by utilizing (1) asymmetric molecular cores, (2) asymmetric anchoring groups, (3) an asymmetric junction environment, and (4) asymmetric electrode materials. This review mainly focuses on the design of molecular cores.


Assuntos
Benzeno/química , Benzoquinonas/química , Compostos Bicíclicos com Pontes/química , Ciclopentanos/química , Eletrônica , Nitrilas/química , Octanos/química , Estrutura Molecular
20.
Nanoscale ; 9(30): 10674-10683, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28616952

RESUMO

Detection and use of physical noise fluctuations in a signal provides significant advantages in the development of bio- and neuro-sensing and functional mimicking devices. Low-dimensional carbon nanomaterials are a good candidate for use in noise generation due to the high surface sensitivity of these materials, which may themselves serve as the main building blocks of these devices. Here, we demonstrate that the addition of a molecule with high redox activity to a carbon nanotube (CNT) field-effect transistor provides tunable current fluctuation noise. A unique charge-trap state in the vicinity of the CNT surface due to the presence of the single molecule is the origin of the noise, which generates a prominent and unique slow discrete random telegraph signal in the device current. The power spectral density reveals the peculiar frequency limit of the fluctuation for different types of molecules depending on their redox activity and adsorption configuration. These results indicate that the detected noise will provide new opportunities to obtain electronic information for a single molecule combined with a nanotube surface, and that controllability of the noise may contribute to the expansion of noise utilization in future bio-inspired devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA