Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 733, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886509

RESUMO

Claudins are a 27-member family of ~25 kDa membrane proteins that integrate into tight junctions to form molecular barriers at the paracellular spaces between endothelial and epithelial cells. As the backbone of tight junction structure and function, claudins are attractive targets for modulating tissue permeability to deliver drugs or treat disease. However, structures of claudins are limited due to their small sizes and physicochemical properties-these traits also make therapy development a challenge. Here we report the development of a synthetic antibody fragment (sFab) that binds human claudin-4 and the determination of a high-resolution structure of it bound to claudin-4/enterotoxin complexes using cryogenic electron microscopy. Structural and biophysical results reveal this sFabs mechanism of select binding to human claudin-4 over other homologous claudins and establish the ability of sFabs to bind hard-to-target claudins to probe tight junction structure and function. The findings provide a framework for tight junction modulation by sFabs for tissue-selective therapies.


Assuntos
Claudina-4 , Claudina-4/metabolismo , Humanos , Junções Íntimas/metabolismo , Microscopia Crioeletrônica , Enterotoxinas/metabolismo , Enterotoxinas/química , Enterotoxinas/imunologia , Fragmentos de Imunoglobulinas/química , Fragmentos de Imunoglobulinas/metabolismo , Ligação Proteica , Modelos Moleculares
2.
Toxins (Basel) ; 15(11)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37999500

RESUMO

Clostridium perfringens enterotoxin (CpE) is a ß-pore forming toxin that disrupts gastrointestinal homeostasis in mammals by binding membrane protein receptors called claudins. Although structures of CpE fragments bound to claudins have been determined, the mechanisms that trigger CpE activation and oligomerization that lead to the formation of cytotoxic ß-pores remain undetermined. Proteolysis of CpE in the gut by trypsin has been shown to play a role in this and subsequent cytotoxicity processes. Here, we report solution structures of full-length and trypsinized CpE using small-angle X-ray scattering (SAXS) and crystal structures of trypsinized CpE and its C-terminal claudin-binding domain (cCpE) using X-ray crystallography. Mass spectrometry and SAXS uncover that removal of the CpE N-terminus by trypsin alters the CpE structure to expose areas that are normally unexposed. Crystal structures of trypsinized CpE and cCpE reveal unique dimer interfaces that could serve as oligomerization sites. Moreover, comparisons of these structures to existing ones predict the functional implications of oligomerization in the contexts of cell receptor binding and ß-pore formation. This study sheds light on trypsin's role in altering CpE structure to activate its function via inducing oligomerization on its path toward cytotoxic ß-pore formation. Its findings can incite new approaches to inhibit CpE-based cytotoxicity with oligomer-disrupting therapeutics.


Assuntos
Clostridium perfringens , Enterotoxinas , Animais , Tripsina , Espalhamento a Baixo Ângulo , Clostridium perfringens/metabolismo , Difração de Raios X , Enterotoxinas/metabolismo , Claudinas/metabolismo , Mamíferos/metabolismo
3.
bioRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37398044

RESUMO

Claudins are a family of ∼25 kDa membrane proteins that integrate into tight junctions to form molecular barriers at the paracellular spaces between endothelial and epithelial cells. Humans have 27 subtypes, which homo- and hetero-oligomerize to impart distinct properties and physiological functions to tissues and organs. As the structural and functional backbone of tight junctions, claudins are attractive targets for therapeutics capable of modulating tissue permeability to deliver drugs or treat disease. However, structures of claudins are limited due to their small sizes and physicochemical properties-these traits also make therapy development a challenge. We have developed a synthetic antibody fragment (sFab) that binds human claudin-4 and used it to resolve structures of its complex with Clostridium perfringens enterotoxin (CpE) using cryogenic electron microscopy (cryo-EM). The resolution of the structures reveals the architectures of 22 kDa claudin-4, the 14 kDa C-terminal domain of CpE, and the mechanism by which this sFab binds claudins. Further, we elucidate the biochemical and biophysical bases of sFab binding and demonstrate that this molecule exhibits subtype-selectivity by assaying homologous claudins. Our results provide a framework for developing sFabs against hard-to-target claudins and establishes the utility of sFabs as fiducial markers for determining cryo-EM structures of this small membrane protein family at resolutions that surpass X-ray crystallography. Taken together, this work highlights the ability of sFabs to elucidate claudin structure and function and posits their potential as therapeutics for modulating tight junctions by targeting specific claudin subtypes.

4.
J Biol Chem ; 298(9): 102357, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35952760

RESUMO

Strains of Clostridium perfringens produce a two-domain enterotoxin (CpE) that afflicts humans and domesticated animals, causing prevalent gastrointestinal illnesses. CpE's C-terminal domain (cCpE) binds cell surface receptors, followed by a restructuring of its N-terminal domain to form a membrane-penetrating ß-barrel pore, which is toxic to epithelial cells of the gut. The claudin family of membrane proteins are known receptors for CpE and also control the architecture and function of cell-cell contacts (tight junctions) that create barriers to intercellular molecular transport. CpE binding and assembly disables claudin barrier function and induces cytotoxicity via ß-pore formation, disrupting gut homeostasis; however, a structural basis of this process and strategies to inhibit the claudin-CpE interactions that trigger it are both lacking. Here, we used a synthetic antigen-binding fragment (sFab) library to discover two sFabs that bind claudin-4 and cCpE complexes. We established these sFabs' mode of molecular recognition and binding properties and determined structures of each sFab bound to claudin-4-cCpE complexes using cryo-EM. The structures reveal that the sFabs bind a shared epitope, but conform distinctly, which explains their unique binding equilibria. Mutagenesis of antigen/sFab interfaces observed therein result in binding changes, validating the structures, and uncovering the sFab's targeting mechanism. From these insights, we generated a model for CpE's claudin-bound ß-pore that predicted sFabs would not prevent cytotoxicity, which we then verified in vivo. Taken together, this work demonstrates the development and mechanism of claudin/cCpE-binding sFabs that provide a framework and strategy for obstructing claudin/CpE assembly to treat CpE-linked gastrointestinal diseases.


Assuntos
Claudinas , Enterotoxinas , Animais , Claudina-3/genética , Claudina-3/metabolismo , Claudina-4/genética , Claudina-4/metabolismo , Claudinas/metabolismo , Clostridium perfringens , Enterotoxinas/metabolismo , Epitopos/metabolismo , Humanos , Ligação Proteica
5.
Cells ; 11(5)2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35269525

RESUMO

Claudins are a family of integral membrane proteins that enable epithelial cell/cell interactions by localizing to and driving the formation of tight junctions. Via claudin self-assembly within the membranes of adjoining cells, their extracellular domains interact, forming barriers to the paracellular transport of small molecules and ions. The bacterium Clostridium perfringens causes prevalent gastrointestinal disorders in mammals by employing an enterotoxin (CpE) that targets claudins. CpE binds to claudins at or near tight junctions in the gut and disrupts their barrier function, potentially by disabling their assembly or via cell signaling means-the mechanism(s) remain unclear. CpE ultimately destroys claudin-expressing cells through the formation of a cytotoxic membrane-penetrating ß-barrel pore. Structures obtained by X-ray crystallography of CpE, claudins, and claudins in complex with CpE fragments have provided the structural bases of claudin and CpE functions, revealing potential mechanisms for the CpE-mediated disruption of claudin-made tight junctions. This review highlights current progress in this space-what has been discovered and what remains unknown-toward efforts to elucidate the molecular mechanism of CpE disruption of tight junction barriers. It further underscores the key insights obtained through structure that are being applied to develop CpE-based therapeutics that combat claudin-overexpressing cancers or modulate tight junction barriers.


Assuntos
Claudinas , Junções Íntimas , Animais , Biologia , Claudinas/metabolismo , Enterotoxinas/toxicidade , Mamíferos/metabolismo , Junções Íntimas/metabolismo
6.
Viruses ; 13(1)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383821

RESUMO

Due to the COVID-19 pandemic and multiple devastating forest fires, the 2020 meeting of the Rocky Mountain Virology Association was held virtually. The three-day gathering featured talks describing recent advances in virology and prion research. The keynote presentation described the measles virus paradox of immune suppression and life-long immunity. Special invited speakers presented information concerning visualizing antiviral effector cell biology in mucosal tissues, uncovering the T-cell tropism of Epstein-Barr virus type 2, a history and current survey of coronavirus spike proteins, a summary of Zika virus vaccination and immunity, the innate immune response to flavivirus infections, a discussion concerning prion disease as it relates to multiple system atrophy, and clues for discussing virology with the non-virologist. On behalf of the Rocky Mountain Virology Association, this report summarizes selected presentations.


Assuntos
Sociedades Científicas , Virologia , Animais , Aniversários e Eventos Especiais , Antivirais , COVID-19 , Infecções por Flavivirus/imunologia , Herpesvirus Humano 4 , Humanos , Imunidade , Pandemias , Príons , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação , Zika virus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA