Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Entomol ; 146(7): 838-849, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36249719

RESUMO

Botanical insecticides offer an environmentally benign insect pest management option for field crops with reduced impacts on natural enemies of pests and pollinators while botanically rich field margins can augment their abundance. Here, we evaluated the non-target effects on natural enemies and pest control efficacy on bean aphids in Lablab of three neem- and pyrethrum-based botanical insecticides (Pyerin75EC®, Nimbecidine® and Pyeneem 20EC®) and determine the influence of florally rich field margin vegetation on the recovery of beneficial insects after treatment. The botanical insecticides were applied at the early and late vegetative growth stages. Data were collected on aphids (abundance, damage severity and percent incidence) and natural enemy (abundance) both at pre-spraying and post-spraying alongside Lablab bean yield. The efficacy of botanical insecticides was similar to a synthetic pesticide control and reduced aphid abundance by 88% compared with the untreated control. However, the number of natural enemies was 34% higher in botanical insecticide-treated plots than in plots treated with synthetic insecticide indicating that plant-based treatments were less harmful to beneficial insects. The presence of field margin vegetation increased further the number of parasitic wasps and tachinid flies by 16% and 20%, respectively. This indicated that non-crop habitats can enhance recovery in beneficial insect populations and that botanical insecticides integrate effectively with conservation biological control strategies. Higher grain yields of 2.55-3.04 and 2.95-3.23 t/ha were recorded for both botanical insecticide and synthetic insecticide in the presence of florally enhanced field margins in consecutive cropping seasons. Overall, these data demonstrated that commercial botanical insecticides together with florally rich field margins offer an integrated, environmentally benign and sustainable alternative to synthetic insecticides for insect pest management and increased productivity of the orphan crop legume, Lablab.

2.
Plant Dis ; 106(2): 701-710, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34633239

RESUMO

Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici, is a major threat to wheat (Triticum spp.) production worldwide. The objective of this study was to determine the virulence of P. striiformis f. sp. tritici races prevalent in the main wheat growing regions of Kenya, which includes Mt. Kenya, Eastern Kenya, and the Rift Valley (Central, Southern, and Northern Rift). Fifty P. striiformis f. sp. tritici isolates collected from 1970 to 1992 and from 2009 to 2014 were virulence phenotyped with stripe rust differential sets, and 45 isolates were genotyped with sequence characterized amplified region (SCAR) markers to differentiate the isolates and identify aggressive strains PstS1 and PstS2. Virulence corresponding to stripe rust resistance genes Yr1, Yr2, Yr3, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, and Yr27 and the seedling resistance in genotype Avocet S were detected. Ten races were detected in the P. striiformis f. sp. tritici samples obtained from 1970 to 1992, and three additional races were detected from 2009 to 2014, with a single race being detected in both periods. The SCAR markers detected both Pst1 and Pst2 strains in the collection. Increasing P. striiformis f. sp. tritici virulence was found in the Kenyan P. striiformis f. sp. tritici population, and different P. striiformis f. sp. tritici race groups were found to dominate different wheat growing regions. Moreover, recent P. striiformis f. sp. tritici races in East Africa indicated possible migration of some race groups into Kenya from other regions. This study is important in elucidating P. striiformis f. sp. tritici evolution and virulence diversity and useful in breeding wheat cultivars with effective resistance to stripe rust.


Assuntos
Doenças das Plantas , Triticum , Quênia , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Puccinia , Triticum/microbiologia , Virulência/genética
3.
Pest Manag Sci ; 78(3): 1109-1116, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34797017

RESUMO

BACKGROUND: Hymenopteran parasitoids provide key natural pest regulation services and are reared commercially as biological control agents. Therefore, understanding parasitoid community composition in natural populations is important to enable better management for optimized natural pest regulation. We carried out a field study to understand the parasitoid community associated with Aphis fabae on East African smallholder farms. Either common bean (Phaseolus vulgaris) or lablab (Lablab purpureus) sentinel plants were infested with Aphis fabae and deployed in 96 fields across Kenya, Tanzania, and Malawi. RESULTS: A total of 463 parasitoids emerged from sentinel plants of which 424 were identified by mitochondrial cytochrome oxidase I (COI) barcoding. Aphidius colemani was abundant in Kenya, Tanzania and Malawi, while Lysiphlebus testaceipes was only present in Malawi. The identity of Aphidius colemani specimens were confirmed by sequencing LWRh and 16S genes and was selected for further genetic and population analyses. A total of 12 Aphidius colemani haplotypes were identified. Of these, nine were from our East African specimens and three from the Barcode of Life Database (BOLD). CONCLUSION: Aphidius colemani and Lysiphlebus testaceipes are potential targets for conservation biological control in tropical smallholder agro-ecosystems. We hypothesize that high genetic diversity in East African populations of Aphidius colemani suggests that this species originated in East Africa and has spread globally due to its use as a biological control agent. These East African populations could have potential for use as strains in commercial biological control or to improve existing Aphidius colemani strains by selective breeding.


Assuntos
Afídeos , Vespas , Animais , Afídeos/genética , Agentes de Controle Biológico , Ecossistema , Controle Biológico de Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA