Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Ophthalmol (Lausanne) ; 4: 1331298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984123

RESUMO

Introduction: Estrogen has emerged as a multifaceted signaling molecule in the retina, playing an important role in neural development and providing neuroprotection in adults. It interacts with two receptor types: classical estrogen receptors (ERs) alpha and beta, and G protein-coupled estrogen receptor (Gper). Gper differs from classical ERs in structure, localization, and signaling. Here we provide the first report of the temporal and spatial properties of Gper transcript and protein expression in the developing and mature mouse retina. Methods: We applied qRT-PCR to determine Gper transcript expression in wild type mouse retina from P0-P21. Immunohistochemistry and Western blot were used to determine Gper protein expression and localization at the same time points. Results: Gper expression showed a 6-fold increase during postnatal development, peaking at P14. Relative total Gper expression exhibited a significant decrease during retinal development, although variations emerged in the timing of changes among different forms of the protein. Gper immunoreactivity was seen in retinal ganglion cells (RGCs) throughout development and also in somas in the position of horizontal cells at early time points. Immunoreactivity was observed in the cytoplasm and Golgi at all time points, in the nucleus at early time points, and in RGC axons as the retina matured. Discussion: In conclusion, our study illuminates the spatial and temporal expression patterns of Gper in the developing mouse retina and provides a vital foundation for further investigations into the role of Gper in retinal development and degeneration.

2.
eNeuro ; 11(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38290840

RESUMO

Considerable progress has been made in studying the receptive fields of the most common primate retinal ganglion cell (RGC) types, such as parasol RGCs. Much less is known about the rarer primate RGC types and the circuitry that gives rise to noncanonical receptive field structures. The goal of this study was to analyze synaptic inputs to smooth monostratified RGCs to determine the origins of their complex spatial receptive fields, which contain isolated regions of high sensitivity called "hotspots." Interestingly, smooth monostratified RGCs co-stratify with the well-studied parasol RGCs and are thus constrained to receiving input from bipolar and amacrine cells with processes sharing the same layer, raising the question of how their functional differences originate. Through 3D reconstructions of circuitry and synapses onto ON smooth monostratified and ON parasol RGCs from central macaque retina, we identified four distinct sampling strategies employed by smooth and parasol RGCs to extract diverse response properties from co-stratifying bipolar and amacrine cells. The two RGC types differed in the proportion of amacrine cell input, relative contributions of co-stratifying bipolar cell types, amount of synaptic input per bipolar cell, and spatial distribution of bipolar cell synapses. Our results indicate that the smooth RGC's complex receptive field structure arises through spatial asymmetries in excitatory bipolar cell input which formed several discrete clusters comparable with physiologically measured hotspots. Taken together, our results demonstrate how the striking differences between ON parasol and ON smooth monostratified RGCs arise from distinct strategies for sampling a common set of synaptic inputs.


Assuntos
Retina , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/fisiologia , Retina/fisiologia , Sinapses/fisiologia , Macaca
3.
Sci Rep ; 12(1): 15160, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071126

RESUMO

Ganglion cells are the projection neurons of the retina. Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and also receive input from rods and cones via bipolar cells and amacrine cells. In primates, multiple types of ipRGCs have been identified. The ipRGCs with somas in the ganglion cell layer have been studied extensively, but less is known about those with somas in the inner nuclear layer, the "displaced" cells. To investigate their synaptic inputs, three sets of horizontal, ultrathin sections through central macaque retina were collected using serial block-face scanning electron microscopy. One displaced ipRGC received nearly all of its excitatory inputs from ON bipolar cells and would therefore be expected to have ON responses to light. In each of the three volumes, there was also at least one cell that had a large soma in the inner nuclear layer, varicose axons and dendrites with a large diameter that formed large, extremely sparse arbor in the outermost stratum of the inner plexiform layer. They were identified as the displaced M1 type of ipRGCs based on this morphology and on the high density of granules in their somas. They received extensive input from amacrine cells, including the dopaminergic type. The vast majority of their excitatory inputs were from OFF bipolar cells, including two subtypes with extensive input from the primary rod pathway. They would be expected to have OFF responses to light stimuli below the threshold for melanopsin or soon after the offset of a light stimulus.


Assuntos
Macaca , Retina , Células Amácrinas/metabolismo , Animais , Gânglios , Retina/metabolismo , Células Ganglionares da Retina/metabolismo
4.
J Undergrad Neurosci Educ ; 20(2): A207-A214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38323060

RESUMO

In this paper we share the first five of what we hope will be many profiles of neuroscientists from historically underrepresented or marginalized groups. This initial collection of profiles, meant to stake out the general territory for future offerings, takes as its subjects a fairly broad range of individuals from Nobel laureates to early career scientists and educators. The goal of this project is to facilitate the dissemination of materials neuroscience educators can use to highlight the scientific contributions and personal stories of scientists from historically marginalized groups, and has been developed more extensively in the Editorial that accompanies this collection (Frenzel and Harrington, 2021). We believe that by sharing these stories, and highlighting the diversity of those who have and will continue to contribute to the field of neuroscience, we can help to foster a more inclusive discipline for our undergraduate students. Each of these profiles is a testament to the respect these contributors hold for their subjects. We hope that others might see this new feature as an opportunity to share the admiration they have for those who have impacted them as colleagues, mentors, and role models.

5.
Mo Med ; 118(5): 466-472, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658442

RESUMO

The leading cause blindness is the loss of retinal ganglion cells which connect the retina to the brain. Degenerative retinal diseases include retinal dystrophy, macular degeneration and diabetic retinopathy, which are currently incurable as the mammalian retina has no intrinsic regenerative capacity. By utilizing insight gained from retinal regeneration in simpler species we define an approach that may unlock regenerative programs in the mammalian retina that potentially facilitate the clinical restoration of retinal function.


Assuntos
Degeneração Retiniana , Humanos , Degeneração Retiniana/terapia
6.
J Comp Neurol ; 529(11): 3098-3111, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33843050

RESUMO

In primates, broad thorny retinal ganglion cells are highly sensitive to small, moving stimuli. They have tortuous, fine dendrites with many short, spine-like branches that occupy three contiguous strata in the middle of the inner plexiform layer. The neural circuits that generate their responses to moving stimuli are not well-understood, and that was the goal of this study. A connectome from central macaque retina was generated by serial block-face scanning electron microscopy, a broad thorny cell was reconstructed, and its synaptic inputs were analyzed. It received fewer than 2% of its inputs from both ON and OFF types of bipolar cells; the vast majority of its inputs were from amacrine cells. The presynaptic amacrine cells were reconstructed, and seven types were identified based on their characteristic morphology. Two types of narrow-field cells, knotty bistratified Type 1 and wavy multistratified Type 2, were identified. Two types of medium-field amacrine cells, ON starburst and spiny, were also presynaptic to the broad thorny cell. Three types of wide-field amacrine cells, wiry Type 2, stellate wavy, and semilunar Type 2, also made synapses onto the broad thorny cell. Physiological experiments using a macaque retinal preparation in vitro confirmed that broad thorny cells received robust excitatory input from both the ON and the OFF pathways. Given the paucity of bipolar cell inputs, it is likely that amacrine cells provided much of the excitatory input, in addition to inhibitory input.


Assuntos
Células Amácrinas/fisiologia , Conectoma/métodos , Retina/citologia , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Sinapses/fisiologia , Células Amácrinas/ultraestrutura , Animais , Macaca , Macaca nemestrina , Masculino , Retina/ultraestrutura , Células Ganglionares da Retina/ultraestrutura , Sinapses/ultraestrutura
7.
PLoS One ; 15(12): e0243075, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33259547

RESUMO

Prenylated Rab Acceptor 1 (PRA1/Rabac1) is a four-pass transmembrane protein that has been found to localize to the Golgi and promiscuously associate with a diverse array of Rab GTPases. We have previously identified PRA1 to be among the earliest significantly down-regulated genes in the rd1 mouse model of retinitis pigmentosa, a retinal degenerative disease. Here, we show that an endogenous subpopulation of PRA1 resides within the endoplasmic reticulum (ER) at ER-mitochondria membrane contact sites in cultured mammalian cells. We also demonstrate that PRA1 contains two previously unidentified ER retention/retrieval amino acid sequences on its cytosolic N-terminal region: a membrane distal di-arginine motif and a novel membrane proximal FFAT-like motif. Using a truncation construct that lacks complete Golgi targeting information, we show that mutation of either motif leads to an increase in cell surface localization, while mutation of both motifs exhibits an additive effect. We also present evidence that illustrates that N- or C- terminal addition of a tag to full-length PRA1 leads to differential localization to either the Golgi or reticular ER, phenotypes that do not completely mirror endogenous protein localization. The presence of multiple ER retention motifs on the PRA1 N-terminal region further suggests that it has a functional role within the ER.


Assuntos
Arginina , Retículo Endoplasmático/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Citosol/metabolismo , Complexo de Golgi/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Transporte Proteico
8.
NPJ Aging Mech Dis ; 6: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33145027

RESUMO

Accumulating evidence strongly implicates iron in the pathogenesis of aging and disease. Iron levels have been found to increase with age in both the human and mouse retinas. We and others have shown that retinal diseases such as age-related macular degeneration and diabetic retinopathy are associated with disrupted iron homeostasis, resulting in retinal iron accumulation. In addition, hereditary disorders due to mutation in one of the iron regulatory genes lead to age dependent retinal iron overload and degeneration. However, our knowledge on whether iron toxicity contributes to the retinopathy is limited. Recently, we reported that iron accumulation is associated with the upregulation of retinal and renal renin-angiotensin system (RAS). Evidences indicate that multiple genes/components of the RAS are targets of Wnt/ß-catenin signaling. Interestingly, aberrant activation of Wnt/ß-catenin signaling is observed in several degenerative diseases. In the present study, we explored whether iron accumulation regulates canonical Wnt signaling in the retina. We found that in vitro and in vivo iron treatment resulted in the upregulation of Wnt/ß-catenin signaling and its downstream target genes including renin-angiotensin system in the retina. We confirmed further that iron activates canonical Wnt signaling in the retina using TOPFlash T-cell factor/lymphoid enhancer factor promoter assay and Axin2-LacZ reporter mouse. The presence of an iron chelator or an antioxidant reversed the iron-mediated upregulation of Wnt/ß-catenin signaling in retinal pigment epithelial (RPE) cells. In addition, treatment of RPE cells with peroxisome proliferator-activated receptor (PPAR) α-agonist fenofibrate prevented iron-induced activation of oxidative stress and Wnt/ß-catenin signaling by chelating the iron. The role of fenofibrate, an FDA-approved drug for hyperlipidemia, as an iron chelator has potentially significant therapeutic impact on iron associated degenerative diseases.

9.
J Comp Neurol ; 528(9): 1588-1598, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31845339

RESUMO

Parasol cells are one of the major types of primate retinal ganglion cells. The goal of this study was to describe the synaptic inputs that shape the light responses of the ON type of parasol cells, which are excited by increments in light intensity. A connectome from central macaque retina was generated by serial blockface scanning electron microscopy. Six neighboring ON parasol cells were reconstructed, and their synaptic inputs were analyzed. On average, they received 21% of their input from bipolar cells, excitatory local circuit neurons receiving input from cones. The majority of their input was from amacrine cells, local circuit neurons of the inner retina that are typically inhibitory. Their contributions to the neural circuit providing input to parasol cells are not well-understood, and the focus of this study was on the presynaptic wide-field amacrine cells, which provided 17% of the input to ON parasol cells. These are GABAergic amacrine cells with long, relatively straight dendrites, and sometimes also axons, that run in a single, narrow stratum of the inner plexiform layer. The presynaptic wide-field amacrine cells were reconstructed, and two types were identified based on their characteristic morphology. One presynaptic amacrine cell was identified as semilunar type 2, a polyaxonal cell that is electrically coupled to ON parasol cells. A second amacrine was identified as wiry type 2, a type known to be sensitive to motion. These inputs likely make ON parasol cells more sensitive to stimuli that are rapidly changing outside their classical receptive fields.


Assuntos
Células Amácrinas/ultraestrutura , Células Ganglionares da Retina/ultraestrutura , Sinapses/ultraestrutura , Animais , Conectoma , Macaca nemestrina , Masculino
10.
BMC Res Notes ; 12(1): 188, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30925931

RESUMO

OBJECTIVE: Prenylated Rab Acceptor 1 (PRA1) is a transmembrane protein localized to the early secretory pathway. It has been found to interact with an array of Rab GTPases, leading to its hypothesized function in the recycling of Rab GTPases. However, all previous strategies used to screen for novel interacting partners have utilized a classic yeast two-hybrid approach that requires both bait and its potential binding partners to be cytosolic proteins. In the split-ubiquitin yeast two-hybrid screen, a protein interaction leads to the re-constitution of ubiquitin, which is followed by proteolytic release of a transcription activator that migrates to the nucleus alone. This allows for bait and/or prey to be integral membrane protein(s). To better understand the in vivo function of PRA1, we took an unbiased approach that screened PRA1 against a normalized mouse neuronal cDNA library using this variant of the classic screening strategy. RESULTS: We report 41 previously unidentified potential PRA1 binding partners revealed by this screen and validate the screen by confirming three of these interactions using a bi-molecular fluorescence complementation assay in mammalian cells. The identified proteins reside throughout the secretory pathway and are both membrane-bound and cytosolic in their identity, suggesting alternative functions for PRA1.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/metabolismo , Animais , Células COS , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Chlorocebus aethiops , Proteínas de Ligação ao GTP/genética , Biblioteca Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Neurônios/metabolismo , Ligação Proteica , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas de Transporte Vesicular/genética
11.
J Undergrad Neurosci Educ ; 18(1): C1-C4, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31983903

RESUMO

The Mysterious Case of Patient X is adapted from an actual clinical case of a famous American writer whose symptoms initially presented as Parkinson's disease. His complex medical history challenges students to investigate alternative diagnoses. Students confront the complexity of biomedical systems from the molecular and cellular processes that underlie neuronal degeneration to the organization and integration of brain regions that control the symptoms of disease. The case is written for upper-level undergraduate or beginning graduate students in biology or neuroscience but could be adapted for introductory neuroscience courses.

12.
Bios ; 89(2): 58-64, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31281183

RESUMO

Retinitis pigmentosa is the most common form of inherited blindness in humans. A well-studied model of the disease is the rd1 mouse, characterized by a loss of function mutation in the catalytic ß subunit of the phosphodiesterase 6 (Pde6) holoenzyme involved in phototransduction within rods and cones. The period of photoreceptor degeneration in the rd1 mouse occurs during postnatal days 10-21. In previous work, only Pde6ß and vesicular-trafficking protein Prenylated Rab Acceptor 1 (PRA1) have been found to be consistently downregulated during the first ten days following birth. In a yeast-two-hybrid assay conducted by our lab, PRA1 was shown to interact with Charged Multivesicular Body Protein 2B (CHMP2B), an endosomal sorting protein that has been implicated in several neurodegenerative diseases, such as frontotemporal dementia and amyotrophic lateral sclerosis. We investigated whether CHMP2B is mislocalized in the rd1 mouse. Immunohistochemical labeling of CHMP2B was done in both postnatal wild type and rd1 mouse retinas. Prior to the onset of degeneration, CHMP2B immunolabeling was weaker in rd1 retinas, particularly in the developing photoreceptor synaptic layer, compared to wild type. Furthermore, staining of CHMP2B in wild type photoreceptors peaked at postnatal day 12, while CHMP2B staining in rd1 retinas was diffuse and disorganized. In conclusion, these findings show that proper localization of CHMP2B is disrupted in rd1 photoreceptors. Further studies are needed to investigate possible roles for CHMP2B in endocytic activity that is vital to photoreceptor maintenance, as well as differentiation, and development in mouse photoreceptors.

13.
J Undergrad Neurosci Educ ; 15(1): C4-C6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27980479

RESUMO

"Professor Eric Can't See" is a semi-biographical case study written for an upper level undergraduate Neurobiology of Disease course. The case is integrated into a unit using a project-based learning approach to investigate the retinal degenerative disorder Retinitis pigmentosa and the visual system. Some case study scenes provide specific questions for student discussion and problem-based learning, while others provide background for student inquiry and related active learning exercises. The case was adapted from "'Chemical Eric' Can't See," and could be adapted for courses in general neuroscience or sensory neuroscience.

14.
Artigo em Inglês | MEDLINE | ID: mdl-26877830

RESUMO

The rd1 mouse is a well-studied model of retinitis pigmentosa (RP), an inherited retinal degenerative disease affecting approximately 1 in 4000 people. It is characterized by a mutation in the Pde6b gene that codes for Phosphodiesterase 6ß (PDE6ß), a downstream effector of phototransduction. Pde6b gene expression occurs embryonically in mouse retina, whereas other proteins involved in phototransduction are expressed around postnatal day 5 (P5). The primary aim of this study is to investigate the temporal and spatial expression pattern of PDE6ß protein during photoreceptor development. Using Western blots with wild type and rd1 mouse retinas from P2 - P21 we demonstrated that PDE6ß protein is expressed in wild type retinas by P2 and is not detected in rd1 retinas. The earliest detection of PDE6ß in wild type retinas by immunohistochemistry was at P6, where it was confined to the apical region of the photoreceptor layer. The expression of PDE6ß protein prior to differentiation of photoreceptor cells and prior to expression of other phototransduction proteins is consistent with the hypothesis that PDE6ß may play a role during photoreceptor development distinct from its role in phototransduction. Our lab previously showed that Prenylated Rab Acceptor 1 (PRA1), a vesicular trafficking protein, is downregulated in the developing rd1 retina, although its function in the retina is unknown. The second aim of this study was to explore the relationship between PRA1 and PDE6ß. We used immunohistochemistry to determine whether the two proteins are co-localized during the postnatal differentiation period. However, no co-localization between PDE6ß and PRA1 was detected. The function of PRA1 in developing retina remains to be elucidated.

15.
Neuroreport ; 25(8): 601-6, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24614363

RESUMO

The rd1 mouse is a model of retinitis pigmentosa, an inherited photoreceptor neurodegenerative disease. In rd1 retina, early onset rod degeneration is caused by a Pde6b mutation that leads to high levels of intracellular cyclic guanosine monophosphate (cGMP). Cyclic nucleotide-gated ion channels (CNGCs), necessary for phototransduction, are regulated by cGMP. We have previously demonstrated that inhibition of dopamine signaling blocks rd1 photoreceptor degeneration in retinal organ cultures. The mechanism underlying this protection remains unknown. The aim of this study was to determine whether inhibition of dopamine signaling alters cGMP accumulation or CNGC expression. Dopamine depletion from rd1 retinal organ cultures resulted in a significant decrease in cGMP compared with untreated rd1 organ cultures. However, cGMP levels in both treated and untreated rd1 organ cultures significantly exceeded cGMP levels in wild-type (wt) retinal organ cultures. The CNGC expression profile was first determined in vivo. Both channel subunits, Cnga1 and Cngb1, are expressed at low levels by postnatal day 2 (P2), increasing sharply by P6 with a modest increase after P12 in wt retina. A similar pattern is seen in rd1 retina until P12 when expression levels decrease, leading to cell death. No significant difference was observed in the expression of either Cnga1 or Cngb1 in organ cultures from wt, rd1, and dopamine-depleted rd1 retinas. Our results show that dopamine depletion significantly decreases cGMP levels in rd1 retinal organ cultures, but that cGMP accumulation remains high, requiring additional mechanisms for photoreceptor protection. These mechanisms may include activation of protein kinase G-signaling pathways and/or crosstalk with dopamine signaling through cyclic adenosine monophosphate pathways.


Assuntos
GMP Cíclico/metabolismo , Dopamina/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Transdução de Sinais/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Cultura de Órgãos , Oxidopamina/farmacologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Retina/citologia , Retina/efeitos dos fármacos , Simpatolíticos/farmacologia
16.
BMC Neurosci ; 13: 152, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23241222

RESUMO

BACKGROUND: The rd1 mouse retina is a well-studied model of retinal degeneration where rod photoreceptors undergo cell death beginning at postnatal day (P) 10 until P21. This period coincides with photoreceptor terminal differentiation in a normal retina. We have used the rd1 retina as a model to investigate early molecular defects in developing rod photoreceptors prior to the onset of degeneration. RESULTS: Using a microarray approach, we performed gene profiling comparing rd1 and wild type (wt) retinas at four time points starting at P2, prior to any obvious biochemical or morphological differences, and concluding at P8, prior to the initiation of cell death. Of the 143 identified differentially expressed genes, we focused on Rab acceptor 1 (Rabac1), which codes for the protein Prenylated rab acceptor 1 (PRA1) and plays an important role in vesicular trafficking. Quantitative RT-PCR analysis confirmed reduced expression of PRA1 in rd1 retina at all time points examined. Immunohistochemical observation showed that PRA1-like immunoreactivity (LIR) co-localized with the cis-Golgi marker GM-130 in the photoreceptor as the Golgi translocated from the perikarya to the inner segment during photoreceptor differentiation in wt retinas. Diffuse PRA1-LIR, distinct from the Golgi marker, was seen in the distal inner segment of wt photoreceptors starting at P8. Both plexiform layers contained PRA1 positive punctae independent of GM-130 staining during postnatal development. In the inner retina, PRA1-LIR also colocalized with the Golgi marker in the perinuclear region of most cells. A similar pattern was seen in the rd1 mouse inner retina. However, punctate and significantly reduced PRA1-LIR was present throughout the developing rd1 inner segment, consistent with delayed photoreceptor development and abnormalities in Golgi sorting and vesicular trafficking. CONCLUSIONS: We have identified genes that are differentially regulated in the rd1 retina at early time points, which may give insights into developmental defects that precede photoreceptor cell death. This is the first report of PRA1 expression in the retina. Our data support the hypothesis that PRA1 plays an important role in vesicular trafficking between the Golgi and cilia in differentiating and mature rod photoreceptors.


Assuntos
Proteínas de Membrana/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Transporte Proteico/fisiologia , Animais , Autoantígenos/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Complexo de Golgi/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células Fotorreceptoras de Vertebrados/metabolismo , Transporte Proteico/genética , Retina/crescimento & desenvolvimento , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo
17.
Mol Vis ; 15: 2868-78, 2009 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-20038975

RESUMO

PURPOSE: The retinal degeneration (rd1) mouse undergoes a rapid loss of rod photoreceptors due to a defect in the cGMP-phosphodiesterase gene. We have previously demonstrated that dopamine (DA) antagonists or DA depletion blocks photoreceptor degeneration and that DA is necessary for photoreceptor degeneration in the rd1 mouse retinal organ culture model. Antagonists for either D1- or D2-family DA receptors are protective in rd1 organ cultures. METHODS: To determine whether photoreceptor survival can be increased in vivo in the rd1 mouse, we used both a pharmacological and a genetic approach. The pharmacological approach involved three techniques to administer 6-hydroxydopamine (6-OHDA) in an attempt to deplete DA in postnatal mouse retina in vivo. As a genetic alternative, DA receptor signaling was inactivated by crossbreeding rd1 mice to D1, D2, D4, and D5 knockout mice to create four lines of double mutants. RESULTS: Pharmacological DA depletion was incomplete due to the limiting size of the postnatal mouse eye and the lethality of systemic inhibition of DA signaling. In all four lines of double mutants, no increase in rod photoreceptor survival was observed. To determine whether protection of rd1 photoreceptors by inhibition of dopaminergic signaling is a result of conditions specific to the organ culture environment, we grew in vitro retinas from the four lines of double mutant mice for four weeks. Again, no increase in photoreceptor survival was seen. Finally, three triple mutants were generated that lacked two DA receptors (D1/D2; D1/D4; and D2/D4) on a rd1 background. In all three cases, rod photoreceptors were not protected from degeneration. CONCLUSIONS: The dramatic protection of rd1 rod photoreceptors by inhibition of DA signaling in organ culture has not been reproduced in vivo by either a pharmacological approach, due to technical limitations, or by genetic manipulations. The possible role of compensatory effects during retinal development in DA receptor deficient mice is considered.


Assuntos
Receptores Dopaminérgicos/deficiência , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Camundongos , Técnicas de Cultura de Órgãos , Receptores Dopaminérgicos/metabolismo
18.
PLoS One ; 2(8): e772, 2007 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-17712420

RESUMO

BACKGROUND: Mucopolysaccharidosis (MPS) IIIB (Sanfilippo Syndrome type B) is caused by a deficiency in the lysosomal enzyme N-acetyl-glucosaminidase (Naglu). Children with MPS IIIB develop disturbances of sleep, activity levels, coordination, vision, hearing, and mental functioning culminating in early death. The murine model of MPS IIIB demonstrates lysosomal distention in multiple tissues, a shortened life span, and behavioral changes. PRINCIPAL FINDINGS: To more thoroughly assess MPS IIIB in mice, alterations in circadian rhythm, activity level, motor function, vision, and hearing were tested. The suprachiasmatic nucleus (SCN) developed pathologic changes and locomotor analysis showed that MPS IIIB mice start their daily activity later and have a lower proportion of activity during the night than wild-type controls. Rotarod assessment of motor function revealed a progressive inability to coordinate movement in a rocking paradigm. Purkinje cell counts were significantly reduced in the MPS IIIB animals compared to age matched controls. By electroretinography (ERG), MPS IIIB mice had a progressive decrease in the amplitude of the dark-adapted b-wave response. Corresponding pathology revealed shortening of the outer segments, thinning of the outer nuclear layer, and inclusions in the retinal pigmented epithelium. Auditory-evoked brainstem responses (ABR) demonstrated progressive hearing deficits consistent with the observed loss of hair cells in the inner ear and histologic abnormalities in the middle ear. CONCLUSIONS/SIGNIFICANCE: The mouse model of MPS IIIB has several quantifiable phenotypic alterations and is similar to the human disease. These physiologic and histologic changes provide insights into the progression of this disease and will serve as important parameters when evaluating various therapies.


Assuntos
Comportamento Animal/fisiologia , Audição/fisiologia , Atividade Motora/fisiologia , Mucopolissacaridose III/fisiopatologia , Visão Ocular/fisiologia , Acetilglucosaminidase/deficiência , Animais , Cerebelo/citologia , Cerebelo/patologia , Criança , Ritmo Circadiano/fisiologia , Modelos Animais de Doenças , Orelha Interna/patologia , Orelha Média/patologia , Eletrorretinografia , Potenciais Evocados Auditivos/fisiologia , Feminino , Humanos , Lisossomos/enzimologia , Lisossomos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucopolissacaridose III/enzimologia , Mucopolissacaridose III/patologia , Fenótipo , Retina/patologia , Teste de Desempenho do Rota-Rod , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/patologia
19.
Proc Natl Acad Sci U S A ; 104(20): 8514-9, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17485676

RESUMO

Members of the carbonic anhydrase (CA) family play an important role in the regulation of pH, CO(2), ion, and water transport. CA IV and CA XIV are membrane-bound isozymes expressed in the eye. CA IV immunostaining is limited to the choriocapillaris overlying the retina, whereas CA XIV is expressed within the retina in Müller glial cells and retinal pigment epithelium. Here, we have characterized the physiological and morphological phenotype of the CA IV-null, CA XIV-null, and CA IV/CA XIV-double-null mouse retinas. Flash electroretinograms performed at 2, 7, and 10 months of age showed that the rod/cone a-wave, b-wave, and cone b-wave were significantly reduced (26-45%) in the CA XIV-null mice compared with wild-type littermates. Reductions in the dark-adapted response were not progressive between 2 and 10 months, and no differences in retinal morphology were observed between wild-type and CA XIV-null mice. Müller cells and rod bipolar cells had a normal appearance. Retinas of CA IV-null mice showed no functional or morphological differences compared with normal littermates. However, CA IV/CA XIV double mutants showed a greater deficit in light response than the CA XIV-null retina. Our results indicate that CA XIV, which regulates extracellular pH and pCO(2), plays an important part in producing a normal retinal light response. A larger functional deficit in the CA IV/CA XIV double mutants suggests that CA IV can also contribute to pH regulation, at least in the absence of CA XIV.


Assuntos
Anidrases Carbônicas/deficiência , Luz , Retina/fisiopatologia , Retina/efeitos da radiação , Animais , Anidrase Carbônica IV/deficiência , Eletrorretinografia , Genótipo , Camundongos , Camundongos Knockout , Estimulação Luminosa , Retina/citologia , Retina/enzimologia , Células Bipolares da Retina/citologia , Células Bipolares da Retina/enzimologia , Células Bipolares da Retina/efeitos da radiação
20.
Mol Ther ; 12(3): 413-21, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15979943

RESUMO

Infantile neuronal ceroid lipofuscinosis (INCL) is a neurodegenerative disorder caused by mutations in the gene encoding the lysosomal enzyme palmitoyl protein thioesterase-1 (PPT1). The earliest clinical sign in INCL is blindness, followed by seizures, cognitive deficits, and early death. Little is known about the progression of the visual deficits in INCL. Here we characterize the progressive retinal dysfunction and examine the efficacy of AAV2-mediated ocular gene therapy in the murine model of INCL. Significant decreases in both mixed rod/cone and pure cone electroretinographic amplitudes were observed at as early as 2 months of age. Intravitreal injection of AAV2-PPT1 increased enzyme levels in the eye to greater than normal levels. The increased PPT1 activity correlated with improvements in the histological abnormalities as well as both mixed rod/cone and pure cone functions. We also demonstrated that palmitoyl protein thioesterase-1 activity was detected in the brain following intravitreal injection. The brain activity is likely due to anterograde axonal transport along the optic tracts. Interestingly, the degree of neurodegeneration throughout the visual pathways of the brain was greatly reduced in AAV-treated INCL mice. Therefore, intravitreal AAV-mediated gene therapy has direct benefits to the eye and to distal sites in the brain along the visual pathways.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Lipofuscinoses Ceroides Neuronais/terapia , Tioléster Hidrolases/genética , Animais , Axônios/metabolismo , Encéfalo/metabolismo , DNA Complementar/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Vetores Genéticos , Imuno-Histoquímica , Lisossomos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Neurônios/metabolismo , Reação em Cadeia da Polimerase , Retina/metabolismo , Retina/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA