Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 18: 583-602, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226594

RESUMO

Nanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physicochemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly increasing range of commercial applications; this, however, may come at a cost, if an association to long-term health and environmental risks is discovered or even just perceived. Many nanomaterials (NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time constraints associated with the experimental assessment, frequently involving animals. Here, the available NM libraries are analyzed for their suitability for integration with novel nanoinformatics approaches and for the development of NM specific Integrated Approaches to Testing and Assessment (IATA) for human and environmental risk assessment, all within the NanoSolveIT cloud-platform. These established and well-characterized NM libraries (e.g. NanoMILE, NanoSolutions, NANoREG, NanoFASE, caLIBRAte, NanoTEST and the Nanomaterial Registry (>2000 NMs)) contain physicochemical characterization data as well as data for several relevant biological endpoints, assessed in part using harmonized Organisation for Economic Co-operation and Development (OECD) methods and test guidelines. Integration of such extensive NM information sources with the latest nanoinformatics methods will allow NanoSolveIT to model the relationships between NM structure (morphology), properties and their adverse effects and to predict the effects of other NMs for which less data is available. The project specifically addresses the needs of regulatory agencies and industry to effectively and rapidly evaluate the exposure, NM hazard and risk from nanomaterials and nano-enabled products, enabling implementation of computational 'safe-by-design' approaches to facilitate NM commercialization.

2.
NanoImpact ; 9: 85-101, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30246165

RESUMO

Many groups within the broad field of nanoinformatics are already developing data repositories and analytical tools driven by their individual organizational goals. Integrating these data resources across disciplines and with non-nanotechnology resources can support multiple objectives by enabling the reuse of the same information. Integration can also serve as the impetus for novel scientific discoveries by providing the framework to support deeper data analyses. This article discusses current data integration practices in nanoinformatics and in comparable mature fields, and nanotechnology-specific challenges impacting data integration. Based on results from a nanoinformatics-community-wide survey, recommendations for achieving integration of existing operational nanotechnology resources are presented. Nanotechnology-specific data integration challenges, if effectively resolved, can foster the application and validation of nanotechnology within and across disciplines. This paper is one of a series of articles by the Nanomaterial Data Curation Initiative that address data issues such as data curation workflows, data completeness and quality, curator responsibilities, and metadata.

3.
Beilstein J Nanotechnol ; 6: 1860-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26425437

RESUMO

There is a critical opportunity in the field of nanoscience to compare and integrate information across diverse fields of study through informatics (i.e., nanoinformatics). This paper is one in a series of articles on the data curation process in nanoinformatics (nanocuration). Other articles in this series discuss key aspects of nanocuration (temporal metadata, data completeness, database integration), while the focus of this article is on the nanocuration workflow, or the process of identifying, inputting, and reviewing nanomaterial data in a data repository. In particular, the article discusses: 1) the rationale and importance of a defined workflow in nanocuration, 2) the influence of organizational goals or purpose on the workflow, 3) established workflow practices in other fields, 4) current workflow practices in nanocuration, 5) key challenges for workflows in emerging fields like nanomaterials, 6) examples to make these challenges more tangible, and 7) recommendations to address the identified challenges. Throughout the article, there is an emphasis on illustrating key concepts and current practices in the field. Data on current practices in the field are from a group of stakeholders active in nanocuration. In general, the development of workflows for nanocuration is nascent, with few individuals formally trained in data curation or utilizing available nanocuration resources (e.g., ISA-TAB-Nano). Additional emphasis on the potential benefits of cultivating nanomaterial data via nanocuration processes (e.g., capability to analyze data from across research groups) and providing nanocuration resources (e.g., training) will likely prove crucial for the wider application of nanocuration workflows in the scientific community.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA