Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727376

RESUMO

Here, we present the results of the synthesis, surface modification, and properties analysis of magnetite-based nanoparticles, specifically Co0.047Fe2.953O4 (S1) and Co0.086Fe2.914O4 (S2). These nanoparticles were synthesized using the co-precipitation method at 80 °C for 2 h. They exhibit a single-phase nature and crystallize in a spinel-type structure (space group Fd3¯m). Transmission electron microscopy analysis reveals that the particles are quasi-spherical in shape and approximately 11 nm in size. An observed increase in saturation magnetization, coercivity, remanence, and blocking temperature in S2 compared to S1 can be attributed to an increase in magnetocrystalline anisotropy due to the incorporation of Co ions in the crystal lattice of the parent compound (Fe3O4). The heating efficiency of the samples was determined by fitting the Box-Lucas equation to the acquired temperature curves. The calculated Specific Loss Power (SLP) values were 46 W/g and 23 W/g (under HAC = 200 Oe and f = 252 kHz) for S1 and S2, respectively. Additionally, sample S1 was coated with citric acid (Co0.047Fe2.953O4@CA) and poly(acrylic acid) (Co0.047Fe2.953O4@PAA) to obtain stable colloids for further tests for magnetic hyperthermia applications in cancer therapy. Fits of the Box-Lucas equation provided SLP values of 21 W/g and 34 W/g for CA- and PAA-coated samples, respectively. On the other hand, X-ray photoelectron spectroscopy analysis points to the catalytically active centers Fe2+/Fe3+ and Co2+/Co3+ on the particle surface, suggesting possible applications of the samples as heterogeneous self-heating catalysts in advanced oxidation processes under an AC magnetic field.

2.
ACS Appl Bio Mater ; 7(5): 3014-3032, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38597359

RESUMO

Emission of greenhouse gases and infectious diseases caused by improper agro-waste disposal has gained significant attention in recent years. To overcome these hurdles, agro-waste can be valorized into valuable bioactive compounds that act as reducing or stabilizing agents in the synthesis of nanomaterials. Herein, we report a simple circular approach using Citrus reticulata Blanco (C. reticulata) waste (peel powder/aqueous extract) as green reducing and capping/stabilizing agents and Zn nitrate/acetate precursors to synthesize ZnO nanoparticles (NPs) with efficient antimicrobial and photocatalytic activities. The obtained NPs crystallized in a hexagonal wurtzite structure and differed clearly in their morphology. UV-vis analysis of the nanoparticles showed a characteristic broad absorption band between 330 and 414 nm belonging to ZnO NPs. Fourier transform infrared (FTIR) spectroscopy of ZnO NPs exhibited a Zn-O band close to 450 cm-1. The band gap values were in the range of 2.84-3.14 eV depending on the precursor and agent used. The crystallite size obtained from size-strain plots from measured XRD patterns was between 7 and 26 nm, with strain between 16 and 4%. The highly crystalline nature of obtained ZnO NPs was confirmed by clear ring diffraction patterns and d-spacing values of the observed lattice fringes. ZnNPeelMan_400 and ZnNExtrMan showed good stability, as the zeta potential was found to be around -20 mV, and reduced particle aggregation. Photoluminescence analysis revealed different defects belonging to oxygen vacancies (VO+ and VO+2) and zinc interstitial (Zni) sites. The presence of oxygen vacancies on the surface of ZnAcExtrMan_400 and ZnAcPeelMan_400 increased antimicrobial activity, specifically against Gram-negative bacteria Escherichia coli (E. coli) and Salmonella enteritidis (S. enteritidis). ZnNExtrMan with a minimal inhibitory concentration of 0.156 mg/mL was more effective against Gram-positive bacteria Staphylococcus aureus (S. aureus), revealing a high influence of particle size and shape on antimicrobial activity. In addition, the photocatalytic activity of the ZnO NPs was examined by assessing the degradation of acid green dye in an aqueous solution under UV light irradiation. ZnAcPeelMan_400 exhibited excellent photocatalytic activity (94%) within 90 min after irradiation compared to other obtained ZnO NPs.


Assuntos
Antibacterianos , Citrus , Teste de Materiais , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Extratos Vegetais , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Citrus/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Catálise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Processos Fotoquímicos , Nanopartículas Metálicas/química , Química Verde
3.
Sensors (Basel) ; 24(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276396

RESUMO

In this study, we propose an eco-friendly method for synthesizing cerium tungstate nanoparticles using hydrothermal techniques. We used scanning, transmission electron microscopy, and X-ray diffraction to analyze the morphology of the synthesized nanoparticles. The results showed that the synthesized nanoparticles were uniform and highly crystalline, with a particle size of about 50 nm. The electrocatalytic properties of the nanoparticles were then investigated using cyclic voltammetry and electrochemical impedance spectroscopy. We further used the synthesized nanoparticles to develop an electrochemical sensor based on a carbon paste electrode that can detect hydroquinone. By optimizing the differential pulse voltammetric method, a wide linearity range of 0.4 to 45 µM and a low detection limit of 0.06 µM were obtained. The developed sensor also expressed excellent repeatability (RSD up to 3.8%) and reproducibility (RSD below 5%). Interferences had an insignificant impact on the determination of analytes, making it possible to use this method for monitoring hydroquinone concentrations in tap water. This study introduces a new approach to the chemistry of materials and the environment and demonstrates that a careful selection of components can lead to new horizons in analytical chemistry.

4.
BMJ Open ; 13(10): e079582, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865406

RESUMO

INTRODUCTION: Paediatric heart transplant patients are disproportionately affected by Epstein-Barr virus (EBV)-related post-transplant lymphoproliferative disease (PTLD) compared with other childhood solid organ recipients. The drivers for this disparity remain poorly understood. A potential risk factor within this cohort is the routine surgical removal of the thymus-a gland critical for the normal development of T-lymphocyte-mediated antiviral immunity-in early life, which does not occur in other solid organ transplant recipients. Our study aims to describe the key immunological differences associated with early thymectomy, its impact on the temporal immune response to EBV infection and subsequent risk of PTLD. METHODS AND ANALYSIS: Prospective and sequential immune monitoring will be performed for 34 heart transplant recipients and 6 renal transplant patients (aged 0-18 years), stratified into early (<1 year), late (>1 year) and non-thymectomy groups. Peripheral blood samples and clinical data will be taken before transplant and at 3, 6, 12 and 24 months post-transplant. Single cell analysis of circulating immune cells and enumeration of EBV-specific T-lymphocytes will be performed using high-dimensional spectral flow cytometry with peptide-Major Histocompatibilty Complex (pMHC) I/II tetramer assay, respectively. The functional status of EBV-specific T-lymphocytes, along with EBV antibodies and viral load will be monitored at each of the predefined study time points. ETHICS AND DISSEMINATION: Ethical approval for this study has been obtained from the North of Scotland Research Ethics Committee. The results will be disseminated through publications in peer-reviewed journals, presentations at scientific conferences and patient-centred forums, including social media. TRIAL REGISTRATION NUMBER: ISRCTN10096625.


Assuntos
Infecções por Vírus Epstein-Barr , Transplante de Coração , Transtornos Linfoproliferativos , Criança , Humanos , Herpesvirus Humano 4/fisiologia , Timectomia/efeitos adversos , Estudos Prospectivos , Transtornos Linfoproliferativos/etiologia , Transplante de Coração/efeitos adversos , Fatores de Risco , Fatores Imunológicos , Reino Unido , Carga Viral , Estudos Observacionais como Assunto
5.
Materials (Basel) ; 16(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37895706

RESUMO

Implementing a circular approach through waste valorization in mortar production with environmentally efficient mix design is a viable pathway for relieving the ecological burden of greenhouse gas emissions, resource depletion and waste management. The main objective of this paper is to evaluate the feasibility of using fly ash (FA), corn cob ash (CCA), and ceramic waste powder (CWP) as supplementary cementitious materials (SCM) in cement-lime masonry mortars. As part of an extensive experimental study, twelve mortar mixtures were made: three reference and nine blended, with mixing ratios of 1:1:5, 1:0.7:4.2, and 1:1:4 ((cement + SCM)/lime/sand), by volume. The examined properties include workability, compressive and flexural strengths, dry bulk density, capillary water absorption, adhesive bond strength, and water vapor permeability. The compressive and flexural strengths of tested mortars were notably impaired, with reductions of up to 60%, while the capillary water absorption coefficient rose by 100% compared to the reference values. The adhesive bond strength of some blended mortars exceeded the strength of the reference mortars. Nevertheless, all blended mortars fulfilled the requirements for general-purpose mortars, while the majority met the criteria for structural masonry applications. In addition, a performance-based index and weighting triangle were used for the comparison and ranking of all analyzed mortar mixtures. The findings of this study may herald a novel use of FA, CCA, and CWP as more eco-friendly binding materials in contemporary construction leading to the reduction in the process's carbon footprint, the improvement in cost efficiency, and the mitigation of the detrimental environmental impact of waste disposal.

6.
Materials (Basel) ; 16(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37629999

RESUMO

(1) Background: An increasing use of pharmaceutics imposes a need for the permanent development of efficient strategies, including the tailoring of highly specific new materials for their removal from the environment. Photocatalytic degradation has been the subject of increasing interest of the researchers in the field. (2) Methods: This paper is focused on the investigation of the possibility to deposit a thin metal layer on a TiO2 surface and study its photocatalytic performance for the degradation of ciprofloxacin using a combination of theoretical and experimental methods. (3) Results: Based on the extensive DFT screening of 24 d-metals' adhesion on TiO2, Cu was selected for further work, due to the satisfactory expected stability and good availability. The (Cu)TiO2 was successfully synthesized and characterized with XRD, SEM+EDS and UV-Vis spectrophotometry. The uniformly distributed copper on the TiO2 surface corresponds to the binding on high-affinity oxygen-rich sites, as proposed with DFT calculations. The photocatalytic degradation rate of ciprofloxacin was improved by about a factor of 1.5 compared to the bare non-modified TiO2. (4) Conclusions: The observed result was ascribed to the ability of adsorbed Cu to impede the agglomeration of TiO2 and increase the active catalytic area, and bandgap narrowing predicted with DFT calculations.

7.
Pharmaceutics ; 15(7)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37514129

RESUMO

As an alternative to classical brachytherapy, intratumoral injection of radionuclide-labeled nanoparticles (nanobrachytherapy, NBT) has been investigated as a superior delivery method over an intravenous route for radionuclide therapy of solid tumors. We created superparamagnetic iron oxide nanoparticles (SPIONs) coated with meso-1,2-dimercaptosuccinic acid (DMSA) and radiolabeled with Lutetium-177 (177Lu), generating 177Lu-DMSA@SPIONs as a potential antitumor agent for nanobrachytherapy. Efficient radiolabeling of DMSA@SPIONS by 177Lu resulted in a stable bond with minimal leakage in vitro. After an intratumoral injection to mouse colorectal CT-26 or breast 4T1 subcutaneous tumors, the nanoparticles remained well localized at the injection site for weeks, with limited leakage. The dose of 3.70 MBq/100 µg/50 µL of 177Lu-DMSA@SPIONs applied intratumorally resulted in a high therapeutic efficacy, without signs of general toxicity. A decreased dose of 1.85 MBq/100 µg/50 µL still retained therapeutic efficacy, while an increased dose of 9.25 MBq/100 µg/50 µL did not significantly benefit the therapy. Histopathology analysis revealed that the 177Lu-DMSA@SPIONs act within a limited range around the injection site, which explains the good therapeutic efficacy achieved by a single administration of a relatively low dose without the need for increased or repeated dosing. Overall, 177Lu-DMSA@SPIONs are safe and potent agents suitable for intra-tumoral administration for localized tumor radionuclide therapy.

9.
Nanomaterials (Basel) ; 13(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903748

RESUMO

Partial cation substitution can significantly change the physical properties of parent compounds. By controlling the chemical composition and knowing the mutual relationship between composition and physical properties, it is possible to tailor the properties of materials to those that are superior for desired technological application. Using the polyol synthesis procedure, a series of yttrium-substituted iron oxide nanoconstructs, γ-Fe2-xYxO3 (YIONs), was prepared. It was found that Y3+ could substitute Fe3+ in the crystal structures of maghemite (γ-Fe2O3) up to a limited concentration of ~1.5% (γ-Fe1.969Y0.031O3). Analysis of TEM micrographs showed that crystallites or particles were aggregated in flower-like structures with diameters from 53.7 ± 6.2 nm to 97.3 ± 37.0 nm, depending on yttrium concentration. To be investigated for potential applications as magnetic hyperthermia agents, YIONs were tested twice: their heating efficiency was tested and their toxicity was investigated. The Specific Absorption Rate (SAR) values were in the range of 32.6 W/g to 513 W/g and significantly decreased with increased yttrium concentration in the samples. Intrinsic loss power (ILP) for γ-Fe2O3 and γ-Fe1.995Y0.005O3 were ~8-9 nH·m2/Kg, which pointed to their excellent heating efficiency. IC50 values of investigated samples against cancer (HeLa) and normal (MRC-5) cells decreased with increased yttrium concentration and were higher than ~300 µg/mL. The samples of γ-Fe2-xYxO3 did not show a genotoxic effect. The results of toxicity studies show that YIONs are suitable for further in vitro/in vivo studies toward to their potential medical applications, while results of heat generation point to their potential use in magnetic hyperthermia cancer treatment or use as self-heating systems for other technological applications such as catalysis.

10.
Anal Bioanal Chem ; 415(18): 4445-4458, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36884077

RESUMO

In this work, we investigated the morphological and electrochemical properties of gallium/bismuth mixed oxide. The bismuth concentration was varied from 0 to 100%. The correct ratio was determined with inductively coupled plasma-optical emission spectroscopy (ICP-OES), while surface characteristics were determined using scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurement. Electrochemical characteristics were studied using electrochemical impedance spectroscopy (EIS) in the Fe2+/3+ couple. The obtained materials were tested for adrenaline detection. After square wave voltammetry (SWV) optimization, the best electrode showed a wide linear working range from 7 to 100 µM at pH 6 of the Britton-Robinson buffer solution (BRBS) supporting electrolyte. The limit of detection (LOD) for the proposed method was calculated as 1.9 µM, with a limit of quantification (LOQ) of 5.8 µM. The excellent selectivity of the proposed method, with good repeatability and reproducibility, strongly suggests the possible application of the procedure for the determination of adrenaline in artificially prepared real samples. The practical applicability with good recovery values indicates that the morphology of the materials is closely connected with other parameters, which further suggests that the developed approach can offer a low-cost, rapid, selective, and sensitive method for adrenaline monitoring.


Assuntos
Bismuto , Gálio , Bismuto/química , Epinefrina , Reprodutibilidade dos Testes , Eletrodos , Técnicas Eletroquímicas/métodos
11.
Biosensors (Basel) ; 13(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36831967

RESUMO

There are ten million people in the world who have Parkinson's disease. The most potent medicine for Parkinson's disease is levodopa (L-DOPA). However, long-term consumption of L-DOPA leads to the appearance of side effects, as a result of which the control and monitoring of its concentrations are of great importance. In this work, we have designed a new electrochemical sensor for detecting L-DOPA using a carbon paste electrode (CPE) modified with Eu2O3@Cr2O3 composite nanoparticles. Rare earth elements, including Eu, are increasingly used to design new electrode nanocomposites with enhanced electrocatalytic properties. Europium has been considered a significant lanthanide element with greater redox reaction behavior. We conducted a hydrothermal synthesis of Eu2O3@Cr2O3 and, for the first time, the acquired nanoparticles were used to modify CPE. The proposed Eu2O3@Cr2O3/CPE electrode was investigated in terms of its electrocatalytic properties and then used to develop an analytical method for detecting and quantifying L-DOPA. The proposed sensor offers a wide linear range (1-100 µM), high sensitivity (1.38 µA µM-1 cm-2) and a low detection limit (0.72 µM). The practical application of the proposed sensor was investigated by analyzing commercially available pharmaceutical tablets of L-DOPA. The corresponding results indicate the excellent potential of the Eu2O3@Cr2O3/CPE sensor for application in real-time L-DOPA detection.


Assuntos
Nanopartículas , Doença de Parkinson , Humanos , Levodopa , Carbono/química , Técnicas Eletroquímicas , Nanopartículas/química , Eletrodos , Neurotransmissores , Limite de Detecção
12.
Pediatr Nephrol ; 38(2): 529-535, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35695967

RESUMO

BACKGROUND: There is increasing evidence of good short-term and medium-term outcomes of ABO incompatible (ABOi) and HLA incompatible (HLAi) kidney transplantation with pre-transplant positive crossmatches in paediatric practice. However, there remain concerns regarding the higher risks of infective complications and antibody-mediated rejections. The aim of our study is to show longer-term follow-up on all ABOi and HLAi paediatric kidney transplant recipients (pKTR) in the UK. METHODS: Questionnaires specifying kidney transplant type, desensitisation requirement and kidney allograft function were sent to 13 paediatric nephrology centres that performed kidney transplantation in children and young people under 18 years of age who received an ABOi and/or HLAi transplant between 1 January 2006 and 31 December 2016. Patient and kidney allograft survival were compared between ABOi, HLAi and ABO/HLA compatible (ABOc/HLAc) groups. RESULTS: Among 711 living donor kidney transplants performed in the UK, 23 were ABOi and 6 were HLAi. Patient survival was 87%, 100% and 96% in ABOi, HLAi and ABOc/HLAc groups, respectively, at median follow-up of 6.8 (3.6-14.0) years post-transplant. Death-censored kidney allograft survival was 100% in all 3 groups at last follow-up. There were no cases of primary non-function in ABOi or HLAi groups, but 2% in the ABOc/HLAc group. There was one reported case of Epstein-Barr viral-induced post-transplant lymphoproliferative disorder. CONCLUSION: Longer term follow-up has shown that ABOi and HLAi kidney transplantation are feasible for pKTR where no compatible donors are available, and that minimising desensitisation should be achieved where possible. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Transplante de Rim , Humanos , Criança , Adolescente , Rejeição de Enxerto , Estudos Retrospectivos , Doadores Vivos , Incompatibilidade de Grupos Sanguíneos , Reino Unido , Sistema ABO de Grupos Sanguíneos , Sobrevivência de Enxerto
13.
Sci Total Environ ; 857(Pt 1): 159250, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36208761

RESUMO

Triclosan (TCS) is a polychlorinated phenoxy phenol (PCPPs) used as a disinfectant and a broad-spectrum antibacterial and antifungal agent in personal hygiene products. TCS easily forms diphenyl ethers and dioxins, which are persistent organic pollutants. This work used a double approach for the TSC sensing: a) screen-printed (SPE) electrochemical platform for on-site application, modified with lanthanum iron oxide and graphitic carbon nitride composite (LaFeO3/Fe2O3@g-C3N4/SPE); and b) carbon paste electrode (CPE), modified with the same material and used in laboratory conditions. Linear range from 0.1 µM to 10 µM, the limit of detection (LOD) of 29 nM and the limit of quantification (LOQ) of 91 nM were obtained for CP electrode in BRBS pH 8. SPE showed the best analytical parameters in BRBS at pH 3, with a linear range from 0.3 µM to 7 µM, LOD of 0.09 µM and LOQ of 0.28 µM. Furthermore, the influence of potential interferents was investigated and proven to be negligible. Determination of TSC was performed to estimate the environmental impact of this compound as well as the practical usefulness of the proposed sensor in the real sample analysis, confirmed with a HPLC analysis.


Assuntos
Técnicas Eletroquímicas , Triclosan , Eletrodos , Limite de Detecção
14.
Polymers (Basel) ; 14(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36432960

RESUMO

Many articles in the literature deal with horseradish peroxidase (HRP) biomineralization, but none pay attention to the isoenzyme composition of commercial HRP or the influence of the carbohydrate component of the protein molecule on the biomineralization process. To study the impact of these factors, we performed periodate oxidation of commercial HRP and a purified HRP-C isoform for biomineralization within ZIF-8. With purified HRP, enzyme@ZIF-8 biocomposites with higher activity were obtained, while periodate oxidation of the carbohydrate component of both commercial HRP and purified HRP-C yields biocomposites with very high activity in acetate buffer that does not degrade the ZIF-8 structure. Using acetate instead of phosphate buffer can prevent the false high activity of HRP@ZIF-8 biocomposites caused by the degradation of ZIF-8 coating. At the same time, purification and especially oxidation of the carbohydrate component of enzymes prior to biomineralization lead to significantly improved activity of the biocomposites.

15.
Biosensors (Basel) ; 12(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36354441

RESUMO

Morphine (MORPH) is natural alkaloid and mainly used as a pain reliever. Its monitoring in human body fluids is crucial for modern medicine. In this paper, we have developed an electrochemical sensor for submicromolar detection of MORPH. The sensor is based on modified carbon paste electrode (CPE) by investigating the FexW1-xO4 ratio in iron tungstate (FeWO4), as well as the ratio of this material in CPE. For the first time, the effect of the iron-tungsten ratio in terms of achieving the best possible electrochemical characteristics for the detection of an important molecule for humans was examined. Morphological and electrochemical characteristics of materials were studied. The best results were obtained using Fe1W3 and 7.5% of modifier in CPE. For MORPH detection, square wave voltammetry (SWV) was optimized. Under the optimized conditions, Fe1W3@CPE resulted in limit of detection (LOD) of the method of 0.58 µM and limit of quantification (LOQ) of 1.94 µM. The linear operating range between 5 and 85 µM of MORPH in the Britton-Robinson buffer solution (BRBS) at pH 8 as supporting electrolyte was obtained. The Fe1W3@CPE sensor resulted in good selectivity and excellent repeatability with relative standard deviation (RSD) and was applied in real-world samples of human urine. Application for direct MORPH detection, without tedious sample pretreatment procedures, suggests that developed electrochemical sensor has appeared to be a suitable competitor for efficient, precise, and accurate monitoring of the MORPH in biological fluids.


Assuntos
Carbono , Técnicas Eletroquímicas , Humanos , Carbono/química , Técnicas Eletroquímicas/métodos , Eletrodos , Ferro , Derivados da Morfina
16.
Int J Pharm ; 628: 122288, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252644

RESUMO

Surface modification of magnetic nanoparticles with poly-l-lysine, proline, and tryptophan was used to design potential theranostic agents for the application in cancer diagnosis and radionuclide-hyperthermia therapy. Characterization of bare and functionalized magnetic nanoparticles was performed in detail. The transparency of the examined magnetic nanoparticles was measured in the non-alternating magnetic field for a complete and better understanding of hyperthermia. For the first time amino acid-functionalized magnetic nanoparticles were labeled with theranostic radionuclides 131I and 177Lu. The specific absorption rate (SAR) procured for poly-l-lysine functionalized magnetic nanoparticles (SAR values of 99.7 W/g at H0 = 15.9 kA/m and resonant frequency of 252 kHz) demonstrated their possible application in magnetic hyperthermia. Poly-l-lysine functionalized magnetic nanoparticles labeled with 177Lu showed the highest radiochemical purity (>99.00 %) and in vitro stability in saline and serum (>98.00 % up to 96 h). The in vivo analysis performed after their intravenous administration in healthy Wistar rats presented good in vivo stability for several days. Encouraging results as well as magnetic and radiochemical properties of 177Lu-PLL-MNPs (80 °C) justify their further testing toward the potential use as theranostic agents for diagnostic and combined radionuclide-hyperthermia therapeutic applications.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Animais , Ratos , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Polilisina , Triptofano , Medicina de Precisão , Prolina , Ratos Wistar , Radioisótopos do Iodo
17.
Mikrochim Acta ; 189(11): 422, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36253569

RESUMO

An electrochemical approach is presented based on multiwall carbon nanotubes (MWCNTs) and neodymium(III) hydroxide (Nd(OH)3) nanoflakes for detection of bovine serum albumin (BSA). The materials were characterized morphologically (XRPD, SEM, and HR-TEM) and electrochemically (DPV, EIS). The MWCNTs@Nd(OH)3 composite was used as support for bovine serum albumin polyclonal antibody (anti-BSA). After the antibody immobilization on the electrochemical platform and antigen/antibody binding time (optimum 60 min), the proposed approach shows a linear voltammetric response toward BSA concentration in the range 0.066 to 6.010 ng mL-1 at maximum peak potential of 0.13 V (vs. Ag/AgCl). Limit of detection (LOD) and limit of quantification (LOQ) were 18 pg mL-1 and 61 pg mL-1, respectively. The precision of the method calculated as relative standard deviation (RSD) of five independent measurements was better 3%. The selectivity of the optimized method regarding structurally similar proteins (human serum albumin and human hemoglobin), ions (Na+, K+, Ca2+, and NO2-), or compounds (glucose, ascorbic acid, dopamine, uric acid, paracetamol, and glycine) was found to be satisfactory, with the current changes of less than 5% in the presence of up to 1 × 105 times higher concentrations (depending on the compound) of the listed potential interfering compounds. Practical applicability of immunosensor for BSA determination in cow whey sample, with recovery values in the range 97 to 103%, shows that the developed method has high potential for precise and accurate detection of BSA, as well as exceptional miniaturization possibilities for on-site and equipment-free sensing.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Acetaminofen , Animais , Anticorpos , Ácido Ascórbico , Técnicas Biossensoriais/métodos , Bovinos , Dopamina , Técnicas Eletroquímicas/métodos , Feminino , Glucose , Glicina , Hemoglobinas , Humanos , Hidróxidos , Imunoensaio/métodos , Nanotubos de Carbono/química , Neodímio , Dióxido de Nitrogênio , Soroalbumina Bovina/química , Albumina Sérica Humana , Ácido Úrico
18.
Biosensors (Basel) ; 12(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36140095

RESUMO

This paper aims to develop an amperometric, non-enzymatic sensor for detecting and quantifying UA as an alert signal induced by allergens with protease activity in human cell lines (HEK293 and HeLa). Uric acid (UA) has been classified as a damage-associated molecular pattern (DAMP) molecule that serves a physiological purpose inside the cell, while outside the cell it can be an indicator of cell damage. Cell damage or stress can be caused by different health problems or by environmental irritants, such as allergens. We can act and prevent the events that generate stress by determining the extent to which cells are under stress. Amperometric calibration measurements were performed with a carbon paste electrode modified with La(OH)3@MWCNT, at the potential of 0.3 V. The calibration curve was constructed in a linear operating range from 0.67 µM to 121 µM UA. The proposed sensor displayed good reproducibility with an RSD of 3.65% calculated for five subsequent measurements, and a low detection limit of 64.28 nM, determined using the 3 S/m method. Interference studies and the real sample analysis of allergen-treated cell lines proved that the proposed sensing platform possesses excellent sensitivity, reproducibility, and stability. Therefore, it can potentially be used to evaluate stress factors in medical research and clinical practice.


Assuntos
Nanotubos de Carbono , Ácido Úrico , Alérgenos , Técnicas Eletroquímicas/métodos , Eletrodos , Células HEK293 , Humanos , Irritantes/análise , Peptídeo Hidrolases , Reprodutibilidade dos Testes , Ácido Úrico/análise
19.
Nanotechnology ; 33(40)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35728572

RESUMO

Radiolabelled superparamagnetic iron oxide nanoparticles (SPIONs) are a promising nanomaterial for the development of dual radiation/hyperthermia cancer therapy. To that purpose, flower-shaped SPIONs with an exceptional heating capability were synthesised and coated with citrate, dextran or (3-aminopropyl)triethoxysilane. Both non-coated and coated SPIONs were nontoxic to CT-26 mouse colon cancer cells up to 1.0 mg ml-1in vitro. In an oscillating magnetic field, citrate-coated SPIONs (CA/SPIONs) displayed the highest heating rate (SAR âˆ¼ 253 W g-1) and the strongest hyperthermia effects against CT-26 cells. Labelling of the CA/SPIONs by the90Y radionuclide, emitting ß-radiation with an average/maximum energy of 0.94/2.23 MeV, and deep tissue penetration generated90Y-CA/SPIONs intended for the therapy of solid tumours. However, intravenous injection of90Y-CA/SPIONs in CT-26 xenograft-bearing mice resulted in low tumour accumulation. On the contrary, intratumoural injection resulted in long-term retention at the injection site. A single intratumoural injection of 0.25 mg CA/SPIONs followed by 30-min courses of magnetic hyperthermia for four consecutive days caused a moderate antitumour effect against CT-26 and 4T1 mouse tumour xenografts. Intratumoural application of 1.85 MBq/0.25 mg90Y-CA/SPIONs, alone or combined with hyperthermia, caused a significant (P ≤ 0.01) antitumour effect without signs of systemic toxicity. The results confirm the suitability of90Y-CA/SPIONs for monotherapy or dual magnetic hyperthermia-radionuclide nanobrachytherapy (NBT) of solid tumours.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias , Animais , Ácido Cítrico , Humanos , Hipertermia Induzida/métodos , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas de Magnetita/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Radioisótopos de Ítrio
20.
Polymers (Basel) ; 13(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34833174

RESUMO

Zeolitic imidazolate framework-8 (ZIF-8) is widely used as a protective coating to encapsulate proteins via biomimetic mineralization. The formation of nucleation centers and further biocomposite crystal growth is entirely governed by the pure electrostatic interactions between the protein's surface and the positively charged Zn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modification of surface amino acid residues can lead to a rapid biocomposite crystal formation. However, a chemical modification of carbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the present study, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidation of GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule, from -10.2 to -36.9 mV, as shown by zeta potential measurements and native PAGE electrophoresis. Biomineralization experiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability of the ZIF-8 biocomposites. Periodate oxidation of carbohydrate components for glycoproteins can serve as a facile and general method for facilitating the biomimetic mineralization of other industrially relevant glycoproteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA