Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(2): e2306454120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170752

RESUMO

Mitochondrial and lysosomal functions are intimately linked and are critical for cellular homeostasis, as evidenced by the fact that cellular senescence, aging, and multiple prominent diseases are associated with concomitant dysfunction of both organelles. However, it is not well understood how the two important organelles are regulated. Transcription factor EB (TFEB) is the master regulator of lysosomal function and is also implicated in regulating mitochondrial function; however, the mechanism underlying the maintenance of both organelles remains to be fully elucidated. Here, by comprehensive transcriptome analysis and subsequent chromatin immunoprecipitation-qPCR, we identified hexokinase domain containing 1 (HKDC1), which is known to function in the glycolysis pathway as a direct TFEB target. Moreover, HKDC1 was upregulated in both mitochondrial and lysosomal stress in a TFEB-dependent manner, and its function was critical for the maintenance of both organelles under stress conditions. Mechanistically, the TFEB-HKDC1 axis was essential for PINK1 (PTEN-induced kinase 1)/Parkin-dependent mitophagy via its initial step, PINK1 stabilization. In addition, the functions of HKDC1 and voltage-dependent anion channels, with which HKDC1 interacts, were essential for the clearance of damaged lysosomes and maintaining mitochondria-lysosome contact. Interestingly, HKDC1 regulated mitophagy and lysosomal repair independently of its prospective function in glycolysis. Furthermore, loss function of HKDC1 accelerated DNA damage-induced cellular senescence with the accumulation of hyperfused mitochondria and damaged lysosomes. Our results show that HKDC1, a factor downstream of TFEB, maintains both mitochondrial and lysosomal homeostasis, which is critical to prevent cellular senescence.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Hexoquinase , Hexoquinase/genética , Hexoquinase/metabolismo , Estudos Prospectivos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Mitocôndrias/metabolismo , Lisossomos/metabolismo , Proteínas Quinases/metabolismo , Senescência Celular/genética , Homeostase , Autofagia/genética
2.
EMBO Rep ; 24(12): e57300, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37987447

RESUMO

Lysosomes are degradative organelles and signaling hubs that maintain cell and tissue homeostasis, and lysosomal dysfunction is implicated in aging and reduced longevity. Lysosomes are frequently damaged, but their repair mechanisms remain unclear. Here, we demonstrate that damaged lysosomal membranes are repaired by microautophagy (a process termed "microlysophagy") and identify key regulators of the first and last steps. We reveal the AGC kinase STK38 as a novel microlysophagy regulator. Through phosphorylation of the scaffold protein DOK1, STK38 is specifically required for the lysosomal recruitment of the AAA+ ATPase VPS4, which terminates microlysophagy by promoting the disassembly of ESCRT components. By contrast, microlysophagy initiation involves non-canonical lipidation of ATG8s, especially the GABARAP subfamily, which is required for ESCRT assembly through interaction with ALIX. Depletion of STK38 and GABARAPs accelerates DNA damage-induced cellular senescence in human cells and curtails lifespan in C. elegans, respectively. Thus, microlysophagy is regulated by STK38 and GABARAPs and could be essential for maintaining lysosomal integrity and preventing aging.


Assuntos
Caenorhabditis elegans , Microautofagia , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Lisossomos/metabolismo , Membranas Intracelulares/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
3.
J Cell Biol ; 222(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37801070

RESUMO

Membrane rupture of lysosomes results in leakage of their contents, which is harmful to cells. Recent studies have reported that several systems contribute to the repair or elimination of damaged lysosomes. Lysophagy is a type of selective autophagy that plays a crucial role in the lysosomal damage response. Because multiple pathways are involved in this response, an assay that specifically evaluates lysophagy is needed. Here, we developed the TMEM192-mKeima probe to evaluate lysophagy. By comparing the use of this probe with the conventional galectin-3 assay, we showed that this probe is more specific to lysophagy. Using TMEM192-mKeima, we showed that TFEB and p62 are important for the lysosomal damage response but not for lysophagy, although they have previously been considered to be involved in lysophagy. We further investigated the initial steps in lysophagy and identified UBE2L3, UBE2N, TRIM10, 16, and 27 as factors involved in it. Our results demonstrate that the TMEM192-mKeima probe is a useful tool for investigating lysophagy.


Assuntos
Autofagia , Macroautofagia , Sondas Moleculares , Autofagia/fisiologia , Lisossomos/metabolismo
4.
STAR Protoc ; 3(1): 101018, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243365

RESUMO

Following lysosomal damage, activation and nuclear translocation of transcription factor EB (TFEB) is the key event to maintain lysosomal homeostasis. Here, we describe steps to induce lysosomal damage in HeLa cells. This can be followed by monitoring the changes in TFEB localization using widefield fluorescence microscopy. As a complementary approach, we describe the use of immunoblotting to follow the activation and localization of TFEB in cell lysates. These protocols enable quantitative analysis of TFEB. For complete details on the use and execution of this protocol, please refer to Nakamura et al. (2020).


Assuntos
Autofagia , Microscopia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Núcleo Celular , Células HeLa , Humanos , Immunoblotting , Lisossomos
5.
Microbiol Spectr ; 9(3): e0158821, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937175

RESUMO

Mycoplasma pneumoniae (Mp) residing extracellularly in the respiratory tract is the primary cause of bacterial community-acquired pneumonia in humans. However, the detailed pathological mechanism of Mp infection, especially inflammation in the lung, remains unclear. This study examined the role of the neutrophils in the inflammation of Mp-induced pneumonia in mice and the mechanism of neutrophil infiltration into the lungs in the Mp-induced pneumonia. We observed massive infiltration of neutrophils in the bronchoalveolar lavage fluid (BALF) and lung injury after the Mp challenge. The neutrophils were shown to contribute to lung injury in Mp pneumonia but were not involved in eliminating Mp, suggesting that neutrophils are detrimental to the host in Mp pneumonia. Mp also induced the production of inflammatory cytokines and chemokines in the BALF in a toll-like receptor 2 (TLR2)-dependent manner. Particularly, both interleukin (IL)-1α and IL-12 p40 played a crucial role in neutrophil infiltration into the BALF in a coordinated manner. Both IL-1α and IL-12 p40 were released from the alveolar macrophages depending on the TLR2 and reactive oxygen species. In addition, the community-acquired respiratory distress syndrome (CARDS) toxin from Mp were found to induce neutrophil infiltration into BALF in a TLR2-independent and IL-1α-dependent manner. Collectively, the TLR2-dependent production of both IL-1α and IL-12 p40, and CARDS toxin have been elucidated to play an important role in neutrophil infiltration into the lungs subsequently leading to the lung injury upon Mp infection in mice. These data will aid in the development of therapeutics and vaccines for Mp pneumonia. IMPORTANCE Although Mp-induced pneumonia is usually a self-limiting disease, refractory life-threatening pneumonia is often induced. In addition, the development of alternative therapeutic strategies for Mp is expected because of the emergence of antibiotic-resistant Mp. However, the lack of knowledge regarding the pathogenesis of Mp-induced pneumonia, especially inflammation upon the Mp infection, makes it tedious to design novel therapeutics and vaccines. For example, although neutrophil infiltration is widely recognized as one of the characteristics of Mp-induced pneumonia, the precise role of neutrophils in the aggravation of Mp pneumonia remains unclear. This study showed that the infiltration of neutrophils in the lungs is detrimental to the host in Mp-induced pneumonia in mice. Furthermore, the TLR2-dependent IL-1α and IL-12 p40 production, and CARDS toxin play important roles in neutrophil infiltration into the lung, following lung injury. Our findings apply to the rational design of novel therapeutics and vaccines against Mp.


Assuntos
Proteínas de Bactérias/imunologia , Toxinas Bacterianas/metabolismo , Interleucina-12/metabolismo , Interleucina-1alfa/metabolismo , Lesão Pulmonar/imunologia , Neutrófilos/imunologia , Pneumonia por Mycoplasma/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Inflamação/imunologia , Inflamação/patologia , Pulmão , Lesão Pulmonar/patologia , Macrófagos Alveolares/imunologia , Camundongos , Mycoplasma pneumoniae/imunologia , Infiltração de Neutrófilos , Espécies Reativas de Oxigênio , Síndrome do Desconforto Respiratório/imunologia , Receptor 2 Toll-Like/genética
6.
Vaccine ; 38(32): 4979-4987, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32536549

RESUMO

Mycoplasma pneumoniae (Mp) is one of the most common causes of community-acquired pneumonia. Given the emergence and high rates of antibiotic-resistant Mp strains, vaccines that prevent the pneumonia and secondary complications due to Mp infection are urgently needed. Although several studies have shown the protective efficacy of Mp vaccines in human clinical trials, some reports suggest that vaccination against Mp exacerbates disease upon subsequent Mp challenge. Therefore, to develop optimal vaccines against Mp, understanding the immune responses that contribute to post-vaccination exacerbation of inflammation is crucial. Here we examined whether Mp vaccination might exacerbate pneumonia after subsequent Mp infection in mice. We found that vaccination with inactivated Mp plus aluminum salts as an adjuvant induced Mp-specific IgG, Th1 cells, and Th17 cells. Toll-like receptor 2 signaling contributed to the induction of an Mp-specific IgG response and was necessary for Mp-specific Th17-cell-but not Th1-cell-responses in vaccinated mice. In addition, vaccination with inactivated Mp plus aluminum salts suppressed the number of Mp organisms in the bronchoalveolar lavage fluid, indicating that vaccination can reduce Mp infection. However, the numbers of total immune cells and neutrophils in bronchoalveolar lavage fluid after Mp challenge did not differ between vaccinated mice and non-vaccinated control mice. Furthermore, depletion of CD4+ T cells prior to Mp challenge decreased pulmonary neutrophil infiltration in vaccinated mice, suggesting that Th1 or Th17 cells (or both) are responsible for the vaccination-induced neutrophil infiltration. These results suggest that, despite reducing Mp infection, vaccination of mice by using inactivated Mp fails to suppress inflammation, such as neutrophil infiltration into the lung, after subsequent Mp infection.


Assuntos
Mycoplasma pneumoniae , Pneumonia por Mycoplasma , Animais , Pulmão , Camundongos , Neutrófilos , Pneumonia por Mycoplasma/prevenção & controle , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA