Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 20(23): e2308847, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38174599

RESUMO

The use of a small organic molecular passivator is proven to be a successful strategy for producing higher-performing quasi-2D perovskite light-emitting diodes (PeLEDs). The small organic molecule can passivate defects on the grain surround and surface of perovskite crystal structures, preventing nonradiative recombination and charge trapping. In this study, a new small organic additive called 2, 8-dibromodibenzofuran (diBDF) is reported and examines its effectiveness as a passivating agent in high-performance green quasi-2D PeLEDs. The oxygen atom in diBDF, acting as a Lewis base, forms coordination bonds with uncoordinated Pb2+, so enhancing the performance of the device. In addition, the inclusion of diBDF in the quasi-2D perovskite results in a decrease in the abundance of low-n phases, hence facilitating efficient carrier mobility. Consequently, PeLED devices with high efficiency are successfully produced, exhibiting an external quantum efficiency of 19.9% at the emission wavelength of 517 nm and a peak current efficiency of 65.0 cd A-1.

2.
Polymers (Basel) ; 15(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896285

RESUMO

In conventional fullerene-based organic photovoltaics (OPVs), in which the excited electrons from the donor are transferred to the acceptor, the electron charge transfer state (eECT) that electrons pass through has a great influence on the device's performance. In a bulk-heterojunction (BHJ) system based on a low bandgap non-fullerene acceptor (NFA), however, a hole charge transfer state (hECT) from the acceptor to the donor has a greater influence on the device's performance. The accurate determination of hECT is essential for achieving further enhancement in the performance of non-fullerene organic solar cells. However, the discovery of a method to determine the exact hECT remains an open challenge. Here, we suggest a simple method to determine the exact hECT level via deconvolution of the EL spectrum of the BHJ blend (ELB). To generalize, we have applied our ELB deconvolution method to nine different BHJ systems consisting of the combination of three donor polymers (PM6, PBDTTPD-HT, PTB7-Th) and three NFAs (Y6, IDIC, IEICO-4F). Under the conditions that (i) absorption of the donor and acceptor are separated sufficiently, and (ii) the onset part of the external quantum efficiency (EQE) is formed solely by the contribution of the acceptor only, ELB can be deconvoluted into the contribution of the singlet recombination of the acceptor and the radiative recombination via hECT. Through the deconvolution of ELB, we have clearly decided which part of the broad ELB spectrum should be used to apply the Marcus theory. Accurate determination of hECT is expected to be of great help in fine-tuning the energy level of donor polymers and NFAs by understanding the charge transfer mechanism clearly.

4.
Adv Mater ; 35(31): e2302143, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37099626

RESUMO

Solar cells (PSCs) with quasi-2D Ruddlesden-Popper perovskites (RPP) exhibit greater environmental stability than 3D perovskites; however, the low power conversion efficiency (PCE) caused by anisotropic crystal orientations and defect sites in the bulk RPP materials limit future commercialization. Herein, a simple post-treatment is reported for the top surfaces of RPP thin films (RPP composition of PEA2 MA4 Pb5 I16 = 5) in which zwitterionic n-tert-butyl-α-phenylnitrone (PBN) is used as the passivation material. The PBN molecules passivate the surface and grain boundary defects in the RPP and simultaneously induce vertical direction crystal orientations of the RPPs, which lead to efficient charge transport in the RPP photoactive materials. With this surface engineering methodology, the optimized devices exhibit a remarkably enhanced PCE of 20.05% as compared with the devices without PBN (≈17.53%) and excellent long-term operational stability with 88% retention of the initial PCE under continuous 1-sun irradiation for over 1000 h. The proposed passivation strategy provides new insights into the development of efficient and stable RPP-based PSCs.

5.
Adv Mater ; 34(41): e2205268, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36030364

RESUMO

Suppressing nonradiative recombination at the interface between the organometal halide perovskite (PVK) and the charge-transport layer (CTL) is crucial for improving the efficiency and stability of PVK-based solar cells (PSCs). Here, a new bathocuproine (BCP)-based nonconjugated polyelectrolyte (poly-BCP) is synthesized and this is introduced as a "dual-side passivation layer" between the tin oxide (SnO2 ) CTL and the PVK absorber. Poly-BCP significantly suppresses both bulk and interfacial nonradiative recombination by passivating oxygen-vacancy defects from the SnO2 side and simultaneously scavenges ionic defects from the other (PVK) side. Therefore, PSCs with poly-BCP exhibits a high power conversion efficiency (PCE) of 24.4% and a high open-circuit voltage of 1.21 V with a reduced voltage loss (PVK bandgap of 1.56 eV). The non-encapsulated PSCs also show excellent long-term stability by retaining 93% of the initial PCE after 700 h under continuous 1-sun irradiation in nitrogen atmosphere conditions.

6.
J Phys Chem Lett ; 12(27): 6418-6424, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34236208

RESUMO

Carrier generation dynamics in binary PTB7-Th:COi8DFIC (1:1.5) and ternary PTB7-Th:COi8DFIC:PC71BM (1:1.05:0.45) composites were investigated to identify the origins of high power conversion efficiencies (PCEs) in ternary bulk-heterojunction (BHJ) organic solar cells. Steady-state photoluminescence and time-resolved photoinduced absorption spectroscopic analyses revealed that the ternary composite exhibited faster hole transfer from COi8DFIC to PTB7-Th (8 ps compared to 21 ps in the binary composite), which led to an improved exciton separation yield in COi8DFIC (94% compared to 68% in the binary composite). Improved intermixing of the component materials and efficient electron transfer from COi8DFIC to PC71BM facilitated enhancement in the hole transfer rate. The COi8DFIC-to-PC71BM electron transfer promoted an electron transport cascade over PTB7-Th, COi8DFIC, and PC71BM, which efficiently deactivated back-electron transfer (carrier recombination loss) from COi8DFIC to PTB7-Th at ∼160 ps and assisted in improving the PCE of the ternary BHJ cell (13.4% compared to 10.5% in the binary BHJ cell).

7.
Nanoscale ; 13(11): 5652-5659, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33710224

RESUMO

A simpler and less expensive fabrication process is one of the essential demands for the commercialization of perovskite solar cells (PeSCs). Especially, inverted PeSCs (I-PeSCs) require a cathode buffer layer (CBL) for fabricating highly efficient and stable PeSCs. However, this increases the number of fabrication step. Here, we demonstrate highly stable and efficient cathode-buffer-layer-free I-PeSCs via additive engineering on an ETL, which is based on phenyl-C61-butyric acid methyl ester (PC61BM) with a small amount of poly(methyl methacrylate) (PMMA). This modified ETL shows not only a simplified fabrication process but also effective extraction of charge from the perovskite to a high work function copper electrode (Cu) by formation of an interfacial dipole at the interfaces between the ETL and the Cu. Additionally, it exhibits good passivation of the trap density existing along the grain boundaries and surface of the perovskite layer, reducing the non-radiative recombination and consistent with the increases in open-circuit voltage (Voc). As a result, I-PeSCs with a blend PC61BM : PMMA ETL demonstrate an enhancement in the power conversion efficiency (PCE) from 13.55% (without PMMA) to 18.38%. Furthermore, they exhibit both burn-in-free behaviour in photostability measurements by maximum power-point tracking (MPPT) method and long-term air-stability (30 days for T90) in ambient air. Lastly, we obtained PCE of 15.03% and 16.83% for large-area (1 cm2) I-PeSCs with PC61BM and PC61BM : PMMA, respectively. This method provides an alternative route to reduce the fabrication time and budget for commercialization of I-PeSCs without sacrificing device performance.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 250: 119227, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33248892

RESUMO

To understand the current limitations of nonfullerene-based organic solar cells (OSCs), the early-time dynamics of the carrier generation in the high performance bulk heterojunction (BHJ) blend of a semiconducting polymer, PBDB-T, and the low bandgap nonfullerene acceptor, ITIC-m, are investigated. After photoexcitation, photo-induced excitons are separated through the ultrafast (~200 fs) electron transfer process from PBDB-T to ITIC-m and through the fast (3-6 ps) hole transfer process from ITIC-m to PBDB-T. However, a part of the separated charges recombines in the non-geminate (long-range) charge-transferred (CT) states. The yield of mobile carriers is correspondingly decreased by recombination in the CT states. In our measurements, the carrier recombination loss in the CT state is decreased by optimizing the BHJ morphology, especially for showing better electron mobility using a processing additive (1,8-diiodooctane) during the fabrication of the composite film, as evidenced by the decreased CT band intensity at ~30 ps and the increased polaron band intensity, which eventually improve power conversion efficiencies (PCEs).

9.
BMB Rep ; 47(10): 558-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24393529

RESUMO

OASL1 is a member of the 2'-5'-oligoadenylate synthetase (OAS) family and promotes viral clearance by activating RNase L. OASL1 interacts with the 5'-untranslated region (UTR) of interferon regulatory factor 7 (Irf7) and inhibits its translation. To identify the secondary structure required for OASL1 binding, we examined the 5'-UTR of the Irf7 transcript using "selective 2'-hydroxyl acylation analyzed by primer extension" (SHAPE). SHAPE takes advantage of the selective acylation of residues in single-stranded regions by 1-methyl-7-nitroisatoic anhydride (1M7). We found five major acylation sites located in, or next to, predicted single-stranded regions of the Irf7 5'-UTR. These results demonstrate the involvement of the stem structure of the Irf7 5'-UTR in the regulation of Irf7 translation, mediated by OASL1.


Assuntos
Regiões 5' não Traduzidas/genética , Primers do DNA/metabolismo , Fator Regulador 7 de Interferon/genética , Conformação de Ácido Nucleico , Reação em Cadeia da Polimerase/métodos , Acilação , Adenosina/metabolismo , Sequência de Bases , Eletroforese em Gel de Poliacrilamida , Hidroxilação , Dados de Sequência Molecular , Oxazinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA