Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosurg ; 138(1): 261-269, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35523259

RESUMO

The New England Neurosurgical Society (NENS) was founded in 1951 under the leadership of its first President (Dr. William Beecher Scoville) and Secretary-Treasurer (Dr. Henry Thomas Ballantine). The purpose of creating the NENS was to unite local neurosurgeons in the New England area; it was one of the first regional neurosurgical societies in America. Although regional neurosurgical societies are important supplements to national organizations, they have often been overshadowed in the available literature. Now in its 70th year, the NENS continues to serve as a platform to represent the needs of New England neurosurgeons, foster connections and networks with colleagues, and provide research and educational opportunities for trainees. Additionally, regional societies enable discussion of issues uniquely relevant to the region, improve referral patterns, and allow for easier attendance with geographic proximity. In this paper, the authors describe the history of the NENS and provide a roadmap for its future. The first section portrays the founders who led the first meetings and establishment of the NENS. The second section describes the early years of the NENS and profiles key leaders. The third section discusses subsequent neurosurgeons who steered the NENS and partnerships with other societies. In the fourth section, the modern era of the NENS and its current activities are highlighted.


Assuntos
Neurocirurgia , Sociedades Médicas , Humanos , Liderança , Neurocirurgiões , Neurocirurgia/história , New England , Encaminhamento e Consulta , Sociedades Médicas/história , Sociedades Médicas/organização & administração , História do Século XX , História do Século XXI
2.
Oncotarget ; 6(38): 40507-18, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26439689

RESUMO

Malignant glioblastomas (GBM) are highly malignant brain tumors that have extensive and aberrant tumor vasculature, including multiple types of vessels. This review focuses on recent discoveries that the angiogenic factor YKL-40 (CHI3L1) acts on glioblastoma-stem like cells (GSCs) to drive the formation of two major forms of tumor vascularization: angiogenesis and vasculogenic mimicry (VM). GSCs possess multipotent cells able to transdifferentiate into vascular pericytes or smooth muscle cells (PC/SMCs) that either coordinate with endothelial cells (ECs) to facilitate angiogenesis or assemble in the absence of ECs to form blood-perfused channels via VM. GBMs express high levels of YKL-40 that drives the divergent signaling cascades to mediate the formation of these distinct microvascular circulations. Although a variety of anti-tumor agents that target angiogenesis have demonstrated transient benefits for patients, they often fail to restrict tumor growth, which underscores the need for additional therapeutic tools. We propose that targeting YKL-40 may compliment conventional anti-angiogenic therapies to provide a substantial clinical benefit to patients with GBM and several other types of solid tumors.


Assuntos
Indutores da Angiogênese/química , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/patologia , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Neovascularização Patológica/patologia , Animais , Neoplasias Encefálicas/metabolismo , Diferenciação Celular , Glioblastoma/metabolismo , Humanos , Transdução de Sinais
3.
Neurosurg Clin N Am ; 16(1): 135-41, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15561533

RESUMO

As intraoperative MRI expands its presence, its use will undoubtedly increase in glioma surgery. The foregoing discussion makes it clear that its benefits are unsurpassed by any other existing system. Because of their radiographic characteristics and gross appearance, gliomas are particularly suited for intraoperative MRI-guided surgery. It enables us to localize gliomas and define tumor margins precisely when, during surgery, the difference between tumor and brain is not easy to discern. The images generated during surgery serve as a detailed and updated map within which navigation is performed with utmost precision. Its significance is further highlighted when dealing with tumors in eloquent areas of the brain, where uncertainties over the location of tumor in relation to important brain structures can hinder the removal of tumor. By providing accurate positional information and in conjunction with cortical mapping techniques, intraoperative MRI enhances the confidence of the surgeon to go forward with resection or to stop when reaching important cortex. It allows us to perform the resection to the desired limit without causing injury to nearby important structures, thereby preventing postoperative neurologic deficits. The tracking system guides us in targeting each minute part of the tumor with unprecedented accuracy, and the ability to update images makes possible the constant evaluation of the progress of surgery. This near-real-time imaging can eliminate the errors brought about by the brain shifting that occurs throughout surgery. It also serves the important purpose of verifying the presence and position of any remaining tumor in the operative field. By means of sequential imaging, additional resection can be performed on any remaining tumor until imaging shows completion. The unwanted occurrence of finding residual tumor on a postoperative scan is thus practically eliminated. As a result, the surgical goal of complete or optimal resection can be achieved without any guesswork. Ultimately, what this means for the glioma patient is increased likelihood of longer survival brought about by a more thorough tumor resection. Intraoperative MRI addresses many of the surgical challenges posed by gliomas. As it becomes more available, there will come a point when the prevailing persuasion will be that some poorly defined tumors near eloquent cortex should not be operated on without intraoperative MRI. In the final analysis, not only is intraoperative MRI worthwhile but it will, in all likelihood, become a standard of care for many glioma cases.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Imageamento por Ressonância Magnética/instrumentação , Procedimentos Neurocirúrgicos/métodos , Neoplasias Encefálicas/cirurgia , Glioma/cirurgia , Humanos , Processamento de Imagem Assistida por Computador , Sensibilidade e Especificidade , Técnicas Estereotáxicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA