Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microbiol ; 56(8): 571-578, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30047086

RESUMO

Bafilomycins produced by Kitasatospora cheerisanensis KCTC- 2395 belong to the 16-membered macrolactone family plecomacrolide antibiotics. Bafilomycin B1 contains 2-amino- 3-hydroxycyclopent-2-enone (C5N), a five membered ring, which gets condensed via an amide linkage to bafilomycin polyketide. To study the biosynthetic pathway of C5N during bafilomycin biosynthesis in K. cheerisanensis KCTC2395, we attempted the functional analysis of two putative genes, encoding 5-aminolevulinic acid synthase (ALAS) and acyl- CoA ligase (ACL). The amplified putative genes for ALAS and ACL were cloned into the E. coli expression vector pET- 32a(+) plasmid, following which the soluble recombinant ALAS and ACL proteins were purified through nickel-affinity column chromatography. Through HPLC analysis of the enzyme reaction mixture, we confirmed the products of putative ALAS and ACL reaction as 5-aminolevulinic acid (5-ALA) and 5-ALA-CoA, respectively. The optimal pH for the putative ALAS reaction was 7.5, and for putative ACL reaction was 7.0, as confirmed by the colorimetric assay. Furthermore, pyridoxal 5'-phosphate (PLP) was found to be an essential cofactor in the putative ALAS reaction, and ATP was a cofactor for the putative ACL catalysis. Finally, we also confirmed that the simultaneous treatment of putative ACL and putative ALAS enzymes resulted in the production of C5N compound from 5-ALA.


Assuntos
5-Aminolevulinato Sintetase/metabolismo , Vias Biossintéticas/genética , Coenzima A Ligases/metabolismo , Ciclopentanos/metabolismo , Streptomycetaceae/enzimologia , Streptomycetaceae/metabolismo , 5-Aminolevulinato Sintetase/genética , Clonagem Molecular , Coenzima A Ligases/genética , Coenzimas/análise , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos , Concentração de Íons de Hidrogênio , Plasmídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Streptomycetaceae/genética
2.
Biochimie ; 121: 219-27, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26700148

RESUMO

Daphnia (Daphnia pulex) is a small planktonic crustacean and a key constituent of aquatic ecosystems. It is generally used as a model organism to study environmental toxic problems. In the past decade, genomic and proteomic datasets of Daphnia have been developed. The proteomic dataset allows for the investigation of toxicological effects in the context of "Daphnia proteomics," resulting in greater insights for toxicological research. To exploit Daphnia for ecotoxicological research, information on the post-translational modification (PTM) of proteins is necessary, as this is a critical regulator of biological processes. Acetylation of lysine (Kac) is a reversible and highly regulated PTM that is associated with diverse biological functions. However, a comprehensive description of Kac in Daphnia is not yet available. To understand the cellular distribution of lysine acetylation in Daphnia, we identified 98 acetylation sites in 65 proteins by immunoprecipitation using an anti-acetyllysine antibody and a liquid chromatography system supported by mass spectroscopy. We identified 28 acetylated sites related to metabolic proteins and six acetylated enzymes associated with the TCA cycle in Daphnia. From GO and KEGG enrichment analyses, we showed that Kac in D. pulex is highly enriched in proteins associated with metabolic processes. Our data provide the first global analysis of Kac in D. pulex and is an important resource for the functional analysis of Kac in this organism.


Assuntos
Daphnia/metabolismo , Proteômica , Acetilação , Animais , Metabolismo Energético/genética , Proteínas/metabolismo
3.
J Microbiol ; 53(1): 84-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25471184

RESUMO

Kitasatospora cheerisanensis KCTC 2395, producing bafilomycin antibiotics belonging to plecomacrolide group, was isolated from a soil sample at Mt. Jiri, Korea. The draft genome sequence contains 8.04 Mb with 73.6% G+C content and 7,810 open reading frames. All the genes for aerial mycelium and spore formations were confirmed in this draft genome. In phylogenetic analysis of MurE proteins (UDP-N-acetylmuramyl-(L)-alanyl-(D)-glutamate:DAP ligase) in a conserved dcw (division of cell wall) locus, MurE proteins of Kitasatospora species were placed in a separate clade between MurEs of Streptomyces species incorporating (LL)-diaminopimelic acid (DAP) and MurEs of Saccharopolyspora erythraea as well as Mycobacterium tuberculosis ligating meso-DAP. From this finding, it was assumed that Kitasatospora MurEs exhibit the substrate specificity for both (LL)-DAP and meso-DAP. The bafilomycin biosynthetic gene cluster was located in the left subtelomeric region. In 71.3 kb-long gene cluster, 17 genes probably involved in the biosynthesis of bafilomycin derivatives were deduced, including 5 polyketide synthase (PKS) genes comprised of 12 PKS modules.


Assuntos
Actinomycetales/genética , Antifúngicos/metabolismo , Genoma Bacteriano , Macrolídeos/metabolismo , Análise de Sequência de DNA , Actinomycetales/isolamento & purificação , Actinomycetales/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Ácido Diaminopimélico/metabolismo , Genes Bacterianos , Família Multigênica , Micélio/crescimento & desenvolvimento , Filogenia , Policetídeo Sintases/genética , República da Coreia , Microbiologia do Solo , Especificidade por Substrato
4.
Genome Announc ; 2(3)2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24948770

RESUMO

Kitasatospora cheerisanensis KCTC 2395, which produces antifungal metabolites with bafilomycin derivatives, including bafilomycin C1-amide, was isolated from a soil sample at Mt. Jiri, South Korea. Here, we report its draft genome sequence, which contains 8.04 Mb with 73.6% G+C content and 7,810 protein-coding genes.

5.
AMB Express ; 3(1): 24, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23663353

RESUMO

Streptomyces griseus DSM 2608 produces bafilomycin, an antifungal plecomacrolide antibiotic. We cloned and sequenced an 87.4-kb region, including a polyketide synthase (PKS) region, methoxymalonate genes, flavensomycinate genes, and other putative regulatory genes. The 58.5kb of PKS region consisting 12 PKS modules arranged in five different PKS genes, was assumed to be responsible for the biosynthesis of plecomacrolide backbone including 16-membered macrocyclic lactone. All the modules showed high similarities with typical type I PKS genes. However, the starting module of PKS gene was confirmed to be specific for isobutyrate by sequence comparison of an acyltransferase domain. In downstream of PKS region, the genes for methoxymalonate biosynthesis were located, among which a gene for FkbH-like protein was assumed to play an important role in the production of methoxymalonyl-CoA from glyceryl-CoA. Further the genes encoding flavensomycinyl-ACP biosynthesis for the post-PKS tailoring were also found in the upstream of PKS region. By gene disruption experiments of a dehydratase domain of module 12 and an FkbH-like protein, this gene cluster was confirmed to be involved in the biosynthesis of bafilomycin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA