Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Sci Adv ; 9(47): eadi8454, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000027

RESUMO

Tissue regeneration after injury involves the dedifferentiation of somatic cells, a natural adaptive reprogramming that leads to the emergence of injury-responsive cells with fetal-like characteristics. However, there is no direct evidence that adaptive reprogramming involves a shared molecular mechanism with direct cellular reprogramming. Here, we induced dedifferentiation of intestinal epithelial cells using OSKM (Oct4, Sox2, Klf4, and c-Myc) in vivo. The OSKM-induced forced dedifferentiation showed similar molecular features of intestinal regeneration, including a transition from homeostatic cell types to injury-responsive-like cell types. These injury-responsive-like cells, sharing gene signatures of revival stem cells and atrophy-induced villus epithelial cells, actively assisted tissue regeneration following damage. In contrast to normal intestinal regeneration involving Ptgs2 induction, the OSKM promotes autonomous production of prostaglandin E2 via epithelial Ptgs1 expression. These results indicate prostaglandin synthesis is a common mechanism for intestinal regeneration but involves a different enzyme when partial reprogramming is applied to the intestinal epithelium.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo
2.
Sci Rep ; 13(1): 5683, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029196

RESUMO

Cultured human pluripotent stem cells (hPSCs) grow as colonies that require breakdown into small clumps for further propagation. Although cell death mechanism by single-cell dissociation of hPSCs has been well defined, how hPSCs respond to the deadly stimulus and recover the original status remains unclear. Here we show that dissociation of hPSCs immediately activates ERK, which subsequently activates RSK and induces DUSP6, an ERK-specific phosphatase. Although the activation is transient, DUSP6 expression persists days after passaging. DUSP6 depletion using the CRISPR/Cas9 system reveals that DUSP6 suppresses the ERK activity over the long term. Elevated ERK activity by DUSP6 depletion increases both viability of hPSCs after single-cell dissociation and differentiation propensity towards mesoderm and endoderm lineages. These findings provide new insights into how hPSCs respond to dissociation in order to maintain pluripotency.


Assuntos
Células-Tronco Pluripotentes , Transdução de Sinais , Humanos , Retroalimentação , Diferenciação Celular , Morte Celular , Fosfatase 6 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/metabolismo
3.
ACS Appl Mater Interfaces ; 14(43): 49303-49312, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36241609

RESUMO

Stretchable electronics have become essential for custom-built electronics, self-assembling robotics, and wearable devices. Although many stretchable electronics contain integrated systems, they still limit bulky connection systems. We introduce a new dual-functioned self-attachable and stretchable interface (SASI), allowing a direct and instant interconnection between rigid and soft electronics. The SASI consists of a sticky and stretchable substrate and surface-embedded serpentine conductors with the single-sided polyimide fabricated using the embedded transfer process. The adhesion property of the SASI is controlled by the mixed elastomer ratio. The resulting sticky and conductive SASI can instantly adhere to a metal surface and create conductive paths. The SASI serpentine conductors exhibit high stretchability (∼290%) and provide self-attachable, re-attachable, and low-resistant electrical contacts (0.85 ohms in 0.25 mm2) between interfaces without pressure, heat, or extra solder. In addition, three-dimensional curved and modular electronics can be formed with the SASI by compiling functional blocks. SASI provides a novel strategy for assembling functional chips or modules for stretchable electronics, opening a path to onboard integrated electronics that are customizable by users for real-world stretchable electronics.

4.
Nat Commun ; 13(1): 4963, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002441

RESUMO

Transistors with inorganic semiconductors have superior performance and reliability compared to organic transistors. However, they are unfavorable for building stretchable electronic products due to their brittle nature. Because of this drawback, they have mostly been placed on non-stretchable parts to avoid mechanical strain, burdening the deformable interconnects, which link these rigid parts, with the strain of the entire system. Integration density must therefore be sacrificed when stretchability is the first priority because the portion of stretchable wirings should be raised. In this study, we show high density integration of oxide thin film transistors having excellent performance and reliability by directly embedding the devices into stretchable serpentine strings to defeat such trade-off. The embedded transistors do not hide from deformation and endure strain up to 100% by themselves; thus, integration density can be enhanced without sacrificing the stretchability. We expect that our approach can create more compact stretchable electronics with high-end functionality than before.

5.
Stem Cell Res Ther ; 13(1): 329, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850773

RESUMO

BACKGROUND: The requirement of the Mek1 inhibitor (iMek1) during naïve pluripotency maintenance results from the activation of the Mek1-Erk1/2 (Mek/Erk) signaling pathway upon leukemia inhibitory factor (LIF) stimulation. METHODS: Through a meta-analysis of previous genome-wide screening for negative regulators of naïve pluripotency, Ptpn11 (encoding the Shp2 protein, which serves both as a tyrosine phosphatase and putative adapter), was predicted as one of the key factors for the negative modulation of naïve pluripotency through LIF-dependent Jak/Stat3 signaling. Using an isogenic pair of naïve and primed mouse embryonic stem cells (mESCs), we demonstrated the differential role of Shp2 in naïve and primed pluripotency. RESULTS: Loss of Shp2 increased naïve pluripotency by promoting Jak/Stat3 signaling and disturbed in vivo differentiation potential. In sharp contrast, Shp2 depletion significantly impeded the self-renewal of ESCs under primed culture conditions, which was concurrent with a reduction in Mek/Erk signaling. Similarly, upon treatment with an allosteric Shp2 inhibitor (iShp2), the cells sustained Stat3 phosphorylation and decoupled Mek/Erk signaling, thus iShp2 can replace the use of iMek1 for maintenance of naïve ESCs. CONCLUSIONS: Taken together, our findings highlight the differential roles of Shp2 in naïve and primed pluripotency and propose the usage of iShp2 instead of iMek1 for the efficient maintenance and establishment of naïve pluripotency.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Embrionárias Murinas , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Animais , Diferenciação Celular , Fator Inibidor de Leucemia/farmacologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Transdução de Sinais
6.
Stem Cell Res ; 63: 102841, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35700632

RESUMO

A human induced pluripotent cell (hiPSC) line, KSCBi012-A, was generated from a 40-year-old male individual using non-integrating episomal vectors expressing reprogramming factors. The generated hiPSCs were integration-free, expressed pluripotency markers, exhibited the potential for differentiation into three germ layers in vivo, and maintained the normal karyotype. This cell line can be used as a control for a disease model and is available from Korea National Stem Cell Bank.


Assuntos
Células-Tronco Pluripotentes Induzidas , Adulto , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Células Epiteliais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Plasmídeos
7.
Metab Eng ; 72: 97-106, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35283260

RESUMO

Naïve and primed pluripotent stem cells recapitulate the peri- and post-implantation development, respectively. Thus, investigation of distinct traits between each pluripotent stem cell type would shed light on early embryonic processes. Herein, by screening a fluorescent probe library, we found that intracellular glycogen led to specific reactivity to CDg4, a glycogen fluorescence sensor, in both human and mouse naïve embryonic stem cells (ESCs). The requirement of constant inhibition of Gsk3ß as well as high oxidative phosphorylation (OxPHOS) in naïve compared to primed ESCs was closely associated to high level of intracellular glycogen in naïve ESCs. Both capacity of OxPHOS and stored glycogen, rescued naïve ESCs by transient inhibition of glycolysis, which selectively eliminated primed ESCs. Additionally, naïve ESCs with active OxPHOS were enriched from a mixture with primed ESCs by high reactivity to ATP-Red1, a mitochondrial ATP fluorescence probe. These results indicate the active OxPHOS and high intracellular glycogen as a novel "biomarker" delineating metabolic remodeling during the transition of naïve pluripotency.


Assuntos
Glicogênio , Células-Tronco Pluripotentes , Trifosfato de Adenosina/metabolismo , Animais , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Camundongos , Células-Tronco Pluripotentes/metabolismo
8.
J Esthet Restor Dent ; 34(1): 297-308, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35080110

RESUMO

This case report describes the interdisciplinary treatment of a 23-year-old female with Class III malocclusion and a missing maxillary left second premolar. Treatment alternatives were discussed, and the selected treatment plan was presented to illustrate a way to gain space for the premolar implant restoration and correct Class III relationship through maxillary molar retraction followed by maxillary total arch protraction with a palatal temporary skeletal anchorage device. Esthetic anterior alignment and functional occlusal rehabilitation was achieved, and facial balance was maintained at the end of treatment. CLINICAL SIGNIFICANCE: Implant restoration in conjunction with regaining orthodontic space by a team of multidisciplinary dental specialists presents an effective treatment solution to permanent tooth agenesis. Class III malocclusion can be treated with a combination of maxillary protraction and mandibular retraction using temporary skeletal anchorage devices. The versatility of modified palatal C-plates presents greater clinical application when related side effects are controlled with solid understanding of their biomechanics.


Assuntos
Má Oclusão Classe III de Angle , Má Oclusão , Procedimentos de Ancoragem Ortodôntica , Adulto , Cefalometria , Feminino , Humanos , Má Oclusão Classe III de Angle/terapia , Maxila , Dente Molar , Desenho de Aparelho Ortodôntico , Técnicas de Movimentação Dentária , Adulto Jovem
9.
Hepatology ; 75(6): 1523-1538, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34773257

RESUMO

BACKGROUND AND AIMS: Currently there is no Food and Drug Administration-approved drug to treat NAFLD and NASH, the rates of which are increasing worldwide. Although NAFLD/NASH are highly complex and heterogeneous conditions, most pharmacotherapy pipelines focus on a single mechanistic target. Considering the importance of the gut-liver axis in their pathogenesis, we investigated the therapeutic effect of a long-acting dual agonist of glucagon-like peptide (GLP)-1 and GLP-2 receptors in mice with NAFLD/NASH. APPROACH AND RESULTS: C57BL/6J mice were fed a choline-deficient high-fat diet/high fructose and sucrose solution. After 16 weeks, mice were randomly allocated to receive vehicle, GLP1-Fc, GLP2-Fc, or GLP1/2-Fc fusion (GLP1/2-Fc) subcutaneously every 2 days for 4 weeks. Body weight was monitored, insulin/glucose tolerance tests were performed, feces were collected, and microbiome profiles were analyzed. Immobilized cell systems were used to evaluate direct peptide effect. Immunohistochemistry, quantitative PCR, immunoblot analysis, tunnel assay, and biochemical assays were performed to assess drug effects on inflammation, hepatic fibrosis, cell death, and intestinal structures. The mice had well-developed NASH phenotypes. GLP1/2-Fc reduced body weight, glucose levels, hepatic triglyceride levels, and cellular apoptosis. It improved liver fibrosis, insulin sensitivity, and intestinal tight junctions, and increased microvillus height, crypt depth, and goblet cells of intestine compared with a vehicle group. Similar effects of GLP1/2-Fc were found in in vitro cell systems. GLP1/2-Fc also changed microbiome profiles. We applied fecal microbiota transplantation (FMT) gain further insight into the mechanism of GLP1/2-Fc-mediated protection. We confirmed that FMT exerted an additive effect on GLP1-Fc group, including the body weight change, liver weight, hepatic fat accumulation, inflammation, and hepatic fibrosis. CONCLUSIONS: A long-acting dual agonist of GLP-1 and GLP-2 receptors is a promising therapeutic strategy to treat NAFLD/NASH.


Assuntos
Microbiota , Hepatopatia Gordurosa não Alcoólica , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 2/metabolismo , Inflamação/metabolismo , Fígado/patologia , Cirrose Hepática/complicações , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia
10.
J Clin Biochem Nutr ; 69(2): 158-170, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34616108

RESUMO

Dietary intervention to prevent Helicobacter pylori (H. pylori)-gastric cancer might be ideal by long-term intervention, rejuvenating action, and no risk of bacterial resistance. Stimulated with finding that kimchi prevented H. pylori-gastric cancer, we compared the efficacy of cancer preventive kimchi (cpkimchi) and standard recipe kimchi (skimchi) and the efficacy between fermented kimchi and non-fermented kimchi (kimuchi) in H. pylori-initiated gastric cancer model and explored novel mechanisms hinted from RNAseq transcriptome analysis. Animal models assessing gastric pathology on 24 and 36 weeks after H. pylori initiated, salt diet-promoted gastric mutagenesis model showed fermented cpkimchi afforded the best outcome of either rejuvenating atrophic gastritis or inhibiting tumorigenesis compared to skimchi and kimuchi. Highest inhibition of atrophic gastritis was achieved with cpkimchi, while significantly lower in kimuchi. Transcriptomic analysis showed ameliorated-endoplasmic reticulum (ER) stress, -oxidative stress, and -apoptosis as major rejuvenating action of cpkimchi. Homogenates from animal model showed that elevated expressions of p-PERK, IRE, ATF6, p-elf, and XBP1 in control group, while significantly decreased with dietary intake of only cpkimchi. Significantly increased expressions of HO-1 and γ-GCS were only noted with cpkimchi. Conclusively, long-term dietary intervention of fermented cpkimchi can be potential way preventing H. pylori-associated carcinogenesis via rejuvenation of atrophic gastritis.

11.
J Clin Biochem Nutr ; 69(2): 171-187, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34616109

RESUMO

Dietary intervention to prevent Helicobacter pylori (H. pylori)-gastric cancer might be ideal because of no risk of bacterial resistance, safety, and rejuvenating action of atrophic gastritis. We have published data about the potential of fermented kimchi as nutritional approach for H. pylori. Hence recent advances in RNAseq analysis lead us to investigate the transcriptome analysis to explain these beneficiary actions of kimchi. gastric cells were infected with either H. pylori or H. pylori plus kimchi. 943 genes were identified as significantly increased or decreased genes according to H. pylori infection and 68 genes as significantly changed between H. pylori infection and H. pylori plus kimchi (p<0.05). Gene classification and Medline database showed DLL4, FGF18, PTPRN, SLC7A11, CHAC1, FGF21, ASAN, CTH, and CREBRF were identified as significantly increased after H. pylori, but significantly decreased with kimchi and NEO1, CLDN8, KLRG1, and IGFBP1 were identified as significantly decreased after H. pylori, but increased with kimchi. After KEGG and STRING-GO analysis, oxidative stress, ER stress, cell adhesion, and apoptosis genes were up-regulated with H. pylori infection but down-regulated with kimchi, whereas tissue regeneration, cellular anti-oxidative response, and anti-inflammation genes were reversely regulated with kimchi (p<0.01). Conclusively, transcriptomes of H. pylori plus kimchi showed significant biological actions.

12.
J Clin Biochem Nutr ; 69(1): 98-110, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34376919

RESUMO

Korean fermented kimchi is probiotic food preventing Helicobacter pylori (H. pylori)-associated atrophic gastritis in both animal and human trial. In order to reveal the effect of fermented kimchi against H. pylori infection, we performed clinical trial to document the changes of fecal microbiota in 32 volunteers (H. pylori (-) chronic superficial gastritis (CSG), H. pylori (+) CSG, and H. pylori (+) chronic atrophic gastritis (CAG) with 10 weeks kimchi. Each amplicon is sequenced on MiSeq of Illumina and the sequence reads were clustered into operational taxonomic units using VSEARCH and the Chao, Simpson, and Shannon Indices. Though significant difference in α- or ß-diversity was not seen in three groups, kimchi intake led to significant diversity of fecal microbiome. As results, Klebsiella, Enterococcus, Ruminococcaceae, Streptococcus, Roseburia, and Clostirdiumsensu were significantly increased in H. pylori (+) CAG, while Akkermansia, Citrobacter, and Lactobacillus were significantly decreased in H. pylori (+) CAG. With 10 weeks of kimchi administration, Bifidobacterium, Lactobacillus, and Ruminococcus were significantly increased in H. pylori (+) CAG, whereas Bacteroides, Subdoligranulum, and Eubacterium coprostanolines were significantly decreased in H. pylori (-) CAG. 10 weeks of kimchi intake significantly improved pepsinogen I/II ratio (p<0.01) with significant decreases in interleukin-1ß. Conclusively, fermented kimchi significantly changed fecal microbiota to mitigate H. pylori-associated atrophic gastritis.

13.
Nutrients ; 13(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921829

RESUMO

Lactobacillus plantarum CJLP55 has anti-pathogenic bacterial and anti-inflammatory activities in vitro. We investigated the dietary effect of CJLP55 supplement in patients with acne vulgaris, a prevalent inflammatory skin condition. Subjects ingested CJLP55 or placebo (n = 14 per group) supplements for 12 weeks in this double-blind, placebo-controlled randomized study. Acne lesion count and grade, skin sebum, hydration, pH and surface lipids were assessed. Metagenomic DNA analysis was performed on urine extracellular vesicles (EV), which indirectly reflect systemic bacterial flora. Compared to the placebo supplement, CJLP55 supplement improved acne lesion count and grade, decreased sebum triglycerides (TG), and increased hydration and ceramide 2, the major ceramide species that maintains the epidermal lipid barrier for hydration. In addition, CJLP55 supplement decreased the prevalence of Proteobacteria and increased Firmicutes, which were correlated with decreased TG, the major skin surface lipid of sebum origin. CJLP55 supplement further decreased the Bacteroidetes:Firmicutes ratio, a relevant marker of bacterial dysbiosis. No differences in skin pH, other skin surface lipids or urine bacterial EV phylum were noted between CJLP55 and placebo supplements. Dietary Lactobacillus plantarum CJLP55 was beneficial to clinical state, skin sebum, and hydration and urine bacterial EV phylum flora in patients with acne vulgaris.


Assuntos
Acne Vulgar/microbiologia , Acne Vulgar/terapia , Suplementos Nutricionais , Vesículas Extracelulares/microbiologia , Lactobacillus plantarum , Método Duplo-Cego , Disbiose/microbiologia , Disbiose/terapia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Sebo/química , Pele/química , Pele/microbiologia , Resultado do Tratamento , Triglicerídeos/metabolismo , Urina/microbiologia , Adulto Jovem
14.
J Clin Biochem Nutr ; 68(2): 139-148, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33879965

RESUMO

Gut bacteria might contribute in early stage of colorectal cancer through the development and advancement of colon adenoma, by which exploring either beneficial bacteria, which are decreased in formation or advancement of colon adenoma and harmful bacteria, which are increased in advancement of colon adenoma may result in implementation of dietary interventions or probiotic therapies to functional means for prevention. Korean fermented kimchi is one of representative probiotic food providing beneficiary microbiota and exerting significant inhibitory outcomes in both APC/Min+ polyposis model and colitis-associated cancer. Based on these backgrounds, we performed clinical trial to document the changes of fecal microbiota in 32 volunteers with normal colon, simple adenoma, and advanced colon adenoma with 10 weeks of fermented kimchi intake. Each amplicon is sequenced on MiSeq of Illumina and the sequence reads were clustered into Operational Taxonomic Units using VSEARCH and the Chao Indices, an estimator of richness of taxa per individual, were estimated to measure the diversity of each sample. Though significant difference in α or ß diversity was not seen between three groups, kimchi intake significantly led to significant diversity of fecal microbiome. After genus analysis, Acinobacteria, Cyanobacteria, Clostridium sensu, Turicibacter, Gastronaeophillales, H. pittma were proven to be increased in patients with advanced colon adenoma, whereas Enterococcua Roseburia, Coryobacteriaceau, Bifidobacterium spp., and Akkermansia were proven to be significantly decreased in feces from patients with advanced colon adenoma after kimchi intake. Conclusively, fermented kimchi plentiful of beneficiary microbiota can afford significant inhibition of either formation or advancement of colon adenoma.

15.
Biomolecules ; 10(10)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050067

RESUMO

Ginsenosides have offered a wide array of beneficial roles in the pharmacological regulation of hepatic metabolic syndromes, including non-alcoholic steatohepatitis (NASH), non-alcoholic fatty liver disease (NAFLD), and obesity. Of the numerous ginsenosides, Rg3 has been widely investigated, but there have been few studies of gypenosides (Gyp). Particularly, no study on Gyp LXXV has been reported to date. Here, to firstly explore the pharmacological effects of Gyp LXXV against NASH and the related mechanism, methionine- and choline-deficient (MCD) diet-induced NASH mice and hepatic cells (stellate cells, hepatic macrophages, and hepatocytes) were selected. Gyp LXXV exhibited markedly alleviated MCD diet-induced hepatic injury, inflammation, and fibrosis by down-regulating hepatic fibrosis markers such as α-smooth muscle actin(α-SMA), collagen1, transforming growth factors-ß (TGF-ß1), tumor necrosis factor-α (TNF-α), MCP-1, interleukin (IL)-1ß, nuclear factor κB (NFκB), and GRP78. Remarkably, histopathological studies confirmed that 15 mg/kg of Gyp LXXV administration to MCD diet-induced mice led to effective prevention of liver injury, lipid accumulation, and activation of hepatic macrophages, indicating that Gyp LXXV might be a potential anti-NASH drug.


Assuntos
Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Células Cultivadas , Dieta Hiperlipídica , Chaperona BiP do Retículo Endoplasmático , Ginsenosídeos/farmacologia , Gynostemma , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Saponinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Fator de Crescimento Transformador beta/metabolismo , Resultado do Tratamento , Triterpenos/uso terapêutico
16.
Nat Commun ; 11(1): 663, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005935

RESUMO

The ability to image pressure distribution over complex three-dimensional surfaces would significantly augment the potential applications of electronic skin. However, existing methods show poor spatial and temporal fidelity due to their limited pixel density, low sensitivity, or low conformability. Here, we report an ultraflexible and transparent electroluminescent skin that autonomously displays super-resolution images of pressure distribution in real time. The device comprises a transparent pressure-sensing film with a solution-processable cellulose/nanowire nanohybrid network featuring ultrahigh sensor sensitivity (>5000 kPa-1) and a fast response time (<1 ms), and a quantum dot-based electroluminescent film. The two ultrathin films conform to each contact object and transduce spatial pressure into conductivity distribution in a continuous domain, resulting in super-resolution (>1000 dpi) pressure imaging without the need for pixel structures. Our approach provides a new framework for visualizing accurate stimulus distribution with potential applications in skin prosthesis, robotics, and advanced human-machine interfaces.


Assuntos
Engenharia Biomédica/instrumentação , Pressão , Pele/química , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/instrumentação , Condutividade Elétrica , Humanos , Imageamento Tridimensional , Nanofios/química
17.
J Clin Biochem Nutr ; 65(2): 109-117, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31592205

RESUMO

Cancer cachexia is a syndrome accompanying weight loss, skeletal muscle atrophy, and loss of adipose tissue in patients with advanced cancer. Since interleukin-6 (IL-6) is one of core mediators causing cancer cachexia and kimchi can modulate IL-6 response, we hypothesized dietary intake of kimchi can ameliorate cancer cachexia. In this study, we studied preemptive administration of kimchi can ameliorate mouse colon carcinoma cells colon (C26) adenocarcinoma-induced cancer cachexia and explored anti-cachexic mechanisms of kimchi focused on the changes of muscle atrophy, cachexic inflammation, and catabolic catastrophe. As results, dietary intake of kimchi significantly attenuated the development of cancer cachexia, presented with lesser weight loss, higher muscle preservation as well as higher survival from cancer cachexia in mice. Starting from significant inhibition of IL-6 and its signaling, kimchi afforded significant inhibition of muscle specific ubiquitin-proteasome system including inhibition of atrogin-1 and muscle ring finger protein-1 (MuRF-1) with other muscle related genes including mitofusin-2 (Mfn-2) and PGC-1α. Significant inhibition of lipolysis gene such as adipose triglyceride lipase (ATGL) and hormone-sensitive ligase (HSL) accompanied with significant induction of fatty acid synthase (FAS) and sterol response element binding protein 1 (SREBP1) was achieved with kimchi. As gene regulation, IL-6 and their receptor as well as Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) were significantly attenuated with kimchi. In conclusion, dietary intake of cancer preventive kimchi can be an anticipating option to ameliorate cancer cachexia via suppressive action of IL-6 accompanied with decreased muscle atrophy and lipolysis.

18.
Free Radic Biol Med ; 130: 328-342, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30412732

RESUMO

17ß-estradiol (E2) is an important regulator of energy homeostasis and glucose metabolism, thus making it a potential target for preventing or treating metabolic disorders. However, the exact mechanism by which E2 affects high glucose-induced oxidative stress remains unclear. Therefore, the present study investigated the role of E2 in high glucose-induced mitochondrial reactive oxygen species (mtROS) production through estrogen receptor (ER)-mediated signaling in human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) in vitro. In addition, the effect of hUCB-MSC transplantation on mouse skin wound healing induced by E2 in ovariectomized (OVX) diabetic mice in vivo was also studied. High glucose (D-glucose, 25 mM) increased mtROS production, resulting in increase of Beclin1 expression and the LC3-II/LC3-I ratio, leading to decreased cell viability. Conversely, E2 (10 nM) treatment significantly decreased high glucose-induced mtROS levels and subsequently restored cell viability, suggesting that E2 serves as a strong antioxidant. High glucose downregulated Nrf2 levels in nucleus, subsequently culminating in Sirt3 downregulation and manganese superoxide dismutase (MnSOD) acetylation. However, we found that E2 induces nuclear Nrf2 expression via interaction with ERα. The increased nuclear translocation of Nrf2 triggered Sirt3 upregulation and MnSOD activation, both of which play important roles in decreasing mtROS levels. Thus, the therapeutic effect of hUCB-MSC transplantation on skin wound healing in OVX diabetic mice was enhanced by E2 treatment compared with the findings in OVX diabetic mice treated only with hUCB-MSCs. In addition, blood vessels with well-developed branches were observed in OVX diabetic mice that underwent hUCB-MSC transplantation and E2 treatment compared with the effects of ERα siRNA-transfected hUCB-MSC transplantation alone. In conclusion, our results imply that E2 protects cells against high glucose-induced mtROS production and autophagic cell death through increasing nuclear translocation of Nrf2, which was followed by Sirt3 upregulation and MnSOD activation in hUCB-MSCs.


Assuntos
Diabetes Mellitus Experimental/genética , Glucose/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Sirtuína 3/genética , Animais , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Estradiol/metabolismo , Sangue Fetal/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/química
19.
Cell Death Differ ; 26(9): 1716-1734, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30464225

RESUMO

Hypoxia inducible factor 1α (HIF1α) is a master regulator leading to metabolic adaptation, an essential physiological process to maintain the survival of stem cells under hypoxia. However, it is poorly understood how HIF1α translocates into the nucleus in stem cells under hypoxia. Here, we investigated the role of a motor adaptor protein Bicaudal D homolog 1 (BICD1) in dynein-mediated HIF1α nuclear translocation and the effect of BICD1 regulation on hypoxia adaptation and its therapeutic potential on human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs). In our results, silencing of BICD1 but not BICD2 abolished HIF1α nuclear translocation and its activity. BICD1 overexpression further enhanced hypoxia-induced HIF1α nuclear translocation. Hypoxia stimulated direct bindings of HIF1α to BICD1 and the intermediate chain of dynein (Dynein IC), which was abolished by BICD1 silencing. Akt inhibition reduced the binding of BICD1 to HIF1α and nuclear translocation of HIF1α. Conversely, Akt activation or GSK3ß silencing further enhanced the hypoxia-induced HIF1α nuclear translocation. Furthermore, BICD1 silencing abolished hypoxia-induced glycolytic reprogramming and increased mitochondrial ROS accumulation and apoptosis in UCB-MSCs under hypoxia. In the mouse skin wound healing model, the transplanted cell survival and skin wound healing capacities of hypoxia-pretreated UCB-MSCs were reduced by BICD1 silencing and further increased by GSK3ß silencing. In conclusion, we demonstrated that BICD1-induced HIF1α nuclear translocation is critical for hypoxia adaptation, which determines the regenerative potential of UCB-MSCs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Hipóxia Celular/genética , Proteínas do Citoesqueleto/genética , Glicogênio Sintase Quinase 3 beta/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Adaptação Fisiológica/genética , Animais , Modelos Animais de Doenças , Dineínas/genética , Sangue Fetal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Inativação Gênica , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/genética , Pele/lesões , Pele/metabolismo , Pele/patologia , Cicatrização/genética , Cicatrização/fisiologia
20.
Cell Death Dis ; 9(11): 1137, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429451

RESUMO

Glucocorticoid, a major risk factor of Alzheimer's disease (AD), is widely known to promote microtubule dysfunction recognized as the early pathological feature that culminates in memory deficits. However, the exact glucocorticoid receptor (GR)-mediated mechanism of how glucocorticoid triggers microtubule destabilization and following intracellular transport deficits remains elusive. Therefore, we investigated the effect of glucocorticoid on microtubule instability and cognitive impairment using male ICR mice and human neuroblastoma SH-SY5Y cells. The mice group that was exposed to corticosteroid, the major glucocorticoid form of rodents, showed reduced trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) 1/2 and mitochondria, which are necessary for memory establishment, into the synapse due to microtubule destabilization. In SH-SY5Y cells, cortisol, the major glucocorticoid form of humans, also decreased microtubule stability represented by reduced acetylated α-tubulin to tyrosinated α-tubulin ratio (A/T ratio), depending on the mitochondria GR-mediated pathway. Cortisol translocated the Hsp70-bound GR into mitochondria which thereafter promoted GR-Bcl-2 interaction. Increased ER-mitochondria connectivity via GR-Bcl-2 coupling led to mitochondrial Ca2+ influx, which triggered mTOR activation. Subsequent autophagy inhibition by mTOR phosphorylation increased SCG10 protein levels via reducing ubiquitination of SCG10, eventually inducing microtubule destabilization. Thus, failure of trafficking AMPAR1/2 and mitochondria into the cell terminus occurred by kinesin-1 detachment from microtubules, which is responsible for transporting organelles towards periphery. However, the mice exposed to pretreatment of microtubule stabilizer paclitaxel showed the restored translocation of AMPAR1/2 or mitochondria into synapses and improved memory function compared to corticosterone-treated mice. In conclusion, glucocorticoid enhances ER-mitochondria coupling which evokes elevated SCG10 and microtubule destabilization dependent on mitochondrial GR. This eventually leads to memory impairment through failure of AMPAR1/2 or mitochondria transport into cell periphery.


Assuntos
Corticosterona/administração & dosagem , Retículo Endoplasmático/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de AMPA/genética , Animais , Transporte Biológico , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Humanos , Injeções Intraperitoneais , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Neurônios/metabolismo , Neurônios/ultraestrutura , Paclitaxel/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de AMPA/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Sirolimo/administração & dosagem , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/ultraestrutura , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA