Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 324: 103075, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219342

RESUMO

A consensus was built in the first half of the 20th century, which was further debated more than 3 decades ago, that the wettability and condensation mechanisms on smooth solid surfaces are modified by the adsorption of organic contaminants present in the environment. Recently, disagreement has formed about this topic once again, as many researchers have overlooked contamination due to its difficulty to eliminate. For example, the intrinsic wettability of rare earth oxides has been reported to be hydrophobic and non-wetting to water. These materials were subsequently shown to display dropwise condensation with steam. Nonetheless, follow on research has demonstrated that the intrinsic wettability of rare earth oxides is hydrophilic and wetting to water, and that a transition to hydrophobicity occurs in a matter of hours-to-days as a consequence of the adsorption of volatile organic compounds from the ambient environment. The adsorption mechanisms, kinetics, and selectivity, of these volatile organic compounds are empirically known to be functions of the substrate material and structure. However, these mechanisms, which govern the surface wettability, remain poorly understood. In this contribution, we introduce current research demonstrating the different intrinsic wettability of metals, rare earth oxides, and other smooth materials, showing that they are intrinsically hydrophilic. Then we provide details on research focusing on the transition from wetting (hydrophilicity) to non-wetting (hydrophobicity) on somooth surfaces due to adsorption of volatile organic compounds. A state-of-the-art figure of merit mapping the wettability of different smooth solid surfaces to ambient exposure as a function of the surface carbon content has also been developed. In addition, we analyse recent works that address these wetting transitions so to shed light on how such processes affect droplet pinning and lateral adhesion. We then conclude with objective perspectives about research on wetting to non-wetting transitions on smooth solid surfaces in an attempt to raise awareness regarding this surface contamination phenomenon within the engineering, interfacial science, and physical chemistry domains.

2.
Adv Mater ; 35(22): e2212294, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940430

RESUMO

Physical unclonable functions (PUFs) are emerging as an alternative to information security by providing an advanced level of cryptographic keys with non-replicable characteristics, yet the cryptographic keys of conventional PUFs are not reconfigurable from the ones assigned at the manufacturing stage and the overall authentication process slows down as the number of entities in the dataset or the length of cryptographic key increases. Herein, a supersaturated solution-based PUF (S-PUF) is presented that utilizes stochastic crystallization of a supersaturated sodium acetate solution to allow a time-efficient, hierarchical authentication process together with on-demand rewritability of cryptographic keys. By controlling the orientation and the average grain size of the sodium acetate crystals via a spatiotemporally programmed temperature profile, the S-PUF now includes two global parameters, that is, angle of rotation and divergence of the diffracted beam, in addition to the speckle pattern to produce multilevel cryptographic keys, and these parameters function as prefixes for the classification of each entity for a fast authentication process. At the same time, the reversible phase change of sodium acetate enables repeated reconfiguration of the cryptographic key, which is expected to offer new possibilities for a next-generation, recyclable anti-counterfeiting platform.

3.
J Clin Med ; 11(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35566760

RESUMO

This study aimed to evaluate the correlation between plasma lipocalin-2 (LCN2) levels and myelin oligodendrocyte glycoprotein (MOG)-immunoglobulin G (IgG) seropositivity in patients with optic neuritis. Peripheral blood samples were collected from 19 patients with optic neuritis and 20 healthy controls. Plasma LCN2 and MOG-IgG levels were measured using enzyme-linked immunosorbent assay and a cell-based assay, respectively. The correlation between plasma LCN2 levels and MOG-IgG titers in patients with optic neuritis was analyzed. Receiver operating characteristic (ROC) curves were constructed to assess and compare the ability of plasma LCN2 and MOG-IgG levels for predicting optic neuritis recurrence. Patients with MOG-IgG-positive optic neuritis had significantly higher mean plasma LCN2 levels than controls and patients with MOG-IgG-negative optic neuritis (p = 0.037). Plasma LCN2 and MOG-IgG levels were significantly correlated in patients with optic neuritis (r = 0.553, p = 0.0141). There were no significant differences in the areas under the ROC curve (AUC) of plasma LCN2 (0.693, 95% confidence interval [CI] 0.443-0.880, p = 0.133) and MOG-IgG (0.641, 95% CI, 0.400-0.840, p = 0.298) levels (95% CI, -0.266-0.448, p = 0.618). Plasma LCN2 levels may aid differentiation of MOG-IgG-positive optic neuritis from MOG-IgG-negative optic neuritis.

4.
iScience ; 25(1): 103691, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35036875

RESUMO

The surface free energy of rare earth oxides (REOs) has been debated during the last decade, with some reporting REOs to be intrinsically hydrophilic and others reporting hydrophobic. Here, we investigate the wettability and surface chemistry of pristine and smooth REO surfaces, conclusively showing that hydrophobicity stems from wettability transition due to volatile organic compound adsorption. We show that, for indoor ambient atmospheres and well-controlled saturated hydrocarbon atmospheres, the apparent advancing and receding contact angles of water increase with exposure time. We examined the surfaces comprehensively with multiple surface analysis techniques to confirm hydrocarbon adsorption and correlate it to wettability transition mechanisms. We demonstrate that both physisorption and chemisorption occur on the surface, with chemisorbed hydrocarbons promoting further physisorption due to their high affinity with similar hydrocarbon molecules. This study offers a better understanding of the intrinsic wettability of REOs and provides design guidelines for REO-based durable hydrophobic coatings.

5.
Langmuir ; 37(33): 10071-10078, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34286995

RESUMO

Slippery liquid infused porous surfaces (SLIPS) are an important class of repellent materials, comprising micro/nanotextures infused with a lubricating liquid. Unlike superhydrophobic surfaces, SLIPS do not rely on a stable air-liquid interface and thus can better manage low surface tension fluids, are less susceptible to damage under physical stress, and are able to self-heal. However, these collective properties are only efficient as long as the lubricant remains infused, which has proved challenging. We hypothesized that, in comparison to a nanohole and nanopillar morphology, the "hybrid" morphology of a hole within a nanopillar, namely a nanotube, would be able to retain and redistribute lubricant more effectively, owing to capillary forces trapping a reservoir of lubricant within the tube, while lubricant between tubes can facilitate redistribution to depleted areas. By virtue of recent fabrication advances in spacer defined intrinsic multiple patterning (SDIMP), we fabricated an array of silicon nanotubes and equivalent arrays of nanoholes and nanopillars (pitch, 560 nm; height, 2 µm). After infusing the nanostructures (prerendered hydrophobic) with lubricant Krytox 1525, we probed the lubricant stability under dynamic conditions and correlated the degree of the lubricant film discontinuity to changes in the contact angle hysteresis. As a proof of concept, the durability test, which involved consecutive deposition of droplets onto the surface amounting to 0.5 L, revealed 2-fold and 1.5-fold enhancements of lubricant retention in nanotubes in comparison to nanopillars and nanoholes, respectively, showing a clear trajectory for prolonging the lifetime of a slippery surface.

6.
ACS Appl Mater Interfaces ; 13(19): 23121-23133, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33949848

RESUMO

Lubricant-infused surfaces (LISs) and slippery liquid-infused porous surfaces (SLIPSs) have shown remarkable success in repelling low-surface-tension fluids. The atomically smooth, defect-free slippery surface leads to reduced droplet pinning and omniphobicity. However, the presence of a lubricant introduces liquid-liquid interactions with the working fluid. The commonly utilized lubricants for LISs and SLIPSs, although immiscible with water, show various degrees of miscibility with organic polar and nonpolar working fluids. Here, we rigorously investigate the extent of miscibility by considering a wide range of liquid-vapor surface tensions (12-73 mN/m) and different categories of lubricants having a range of viscosities (5-2700 cSt). Using high-fidelity analytical chemistry techniques including X-ray photoelectron spectroscopy, nuclear magnetic resonance, thermogravimetric analysis, and two-dimensional gas chromatography, we quantify lubricant miscibility to parts per billion accuracy. Furthermore, we quantify lubricant concentrations in the collected condensate obtained from prolonged condensation experiments with ethanol and hexane to delineate mixing and shear-based lubricant drainage mechanisms and to predict the lifetime of LISs and SLIPSs. Our work not only elucidates the effect of lubricant properties on miscibility with various fluids but also develops guidelines for developing stable and robust LISs and SLIPSs.

7.
Uisahak ; 30(1): 69-100, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34010849

RESUMO

Many medical books of the late Joseon Dynasty were based on the medical knowledge of Donguibogam. For this reason, most of the studies have explained the medicine of the late Joseon Dynasty focusing on Donguibogam. However, the appearance of medicine in the late Joseon Dynasty is more complex than that. Although the "treatment knowledge" of Donguibogam had a huge impact in the late Joseon Dynasty, the "medical thought" of Donguibogam was not easily established. This is confirmed through the knowledge system of medical books in the late Joseon Dynasty. Jejungsinpyeon, published by the government in the late Joseon Dynasty, disassembled the contents of Dongibogam and rearranged it into a knowledge system of Uihagibmun. Injeji, which was made in the private sector, followed the same method. They tried to maintain part of the knowledge system of Donguibogam. Nevertheless, the framework of perception that extends from "human" to "disease," the central idea of Donguibogam, was not maintained. This shows that there was a considerable amount of respect for the medicine of Ming Dynasty in the late Joseon Dynasty. Therefore, for a more in-depth understanding of medicine in the late Joseon Dynasty, it is necessary to examine in more detail the influences of other medical books such as Uihagibmun, Bonchogangmok, and Gyeongakjeonseo in addition to Donguibogam. This should be understood as a process in which various medical knowledge and systems compete.


Assuntos
Livros , Medicina Tradicional Coreana , Governo , Setor Privado , Projetos de Pesquisa
8.
ACS Nano ; 14(9): 12091-12100, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32813489

RESUMO

Periodic nanotube arrays render enhanced functional properties through their interaction with light and matter, but to reach optimal performance for technologically prominent applications, such as wettability or photonics, structural fine-tuning is essential. Nonetheless, a universal and scalable method providing independent dimension control, high aspect ratios, and the prospect of further structural complexity remains unachieved. Here, we answer this need through an atomic layer deposition (ALD)-enabled multiple patterning. Unlike previous methods, the ALD-deposited spacer is applied directly on the prepatterned target substrate material, serving as an etching mask to generate a multitude of tailored nanotubes. By concept iteration, we further realize concentric and/or binary nanoarrays in a number of industrially important materials such as silicon, glass, and polymers. To demonstrate the achieved quality and applicability of the structures, we probe how nanotube fine-tuning induces broadband antireflection and present a surface boasting extremely low reflectance of <1% across the wavelength range of 300-1050 nm.

9.
Nano Lett ; 20(10): 6989-6997, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32790414

RESUMO

Nanoimprinting lithography (NIL) is a next-generation nanofabrication method, capable of replicating nanostructures from original master surfaces. Here, we develop highly scalable, simple, and nondestructive NIL using a dissolvable template. Termed dissolvable template nanoimprinting lithography (DT-NIL), our method utilizes an economic thermoplastic resin to fabricate nanoimprinting templates, which can be easily dissolved in simple organic solvents. We used the DT-NIL method to replicate cicada wings which have surface nanofeatures of ∼100 nm in height. The master, template, and replica surfaces showed a >∼94% similarity based on the measured diameter and height of the nanofeatures. The versatility of DT-NIL was also demonstrated with the replication of re-entrant, multiscale, and hierarchical features on fly wings, as well as hard silicon wafer-based artificial nanostructures. The DT-NIL method can be performed under ambient conditions with inexpensive materials and equipment. Our work opens the door to opportunities for economical and high-throughput nanofabrication processes.


Assuntos
Nanoestruturas , Animais , Impressão , Asas de Animais
10.
Sensors (Basel) ; 19(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569700

RESUMO

Research on a terrain-blind walking control that can walk stably on unknown and uneven terrain is an important research field for humanoid robots to achieve human-level walking abilities, and it is still a field that needs much improvement. This paper describes the design, implementation, and experimental results of a robust balance-control framework for the stable walking of a humanoid robot on unknown and uneven terrain. For robust balance-control against disturbances caused by uneven terrain, we propose a framework that combines a capture-point controller that modifies the control reference, and a balance controller that follows its control references in a cascading structure. The capture-point controller adjusts a zero-moment point reference to stabilize the perturbed capture-point from the disturbance, and the adjusted zero-moment point reference is utilized as a control reference for the balance controller, comprised of zero-moment point, leg length, and foot orientation controllers. By adjusting the zero-moment point reference according to the disturbance, our zero-moment point controller guarantees robust zero-moment point control performance in uneven terrain, unlike previous zero-moment point controllers. In addition, for fast posture stabilization in uneven terrain, we applied a proportional-derivative admittance controller to the leg length and foot orientation controllers to rapidly adapt these parts of the robot to uneven terrain without vibration. Furthermore, to activate position or force control depending on the gait phase of a robot, we applied gain scheduling to the leg length and foot orientation controllers, which simplifies their implementation. The effectiveness of the proposed control framework was verified by stable walking performance on various uneven terrains, such as slopes, stone fields, and lawns.


Assuntos
Equilíbrio Postural , Robótica/instrumentação , Robótica/métodos , Caminhada , Desenho de Equipamento , , Humanos , Perna (Membro) , Caminhada/fisiologia
11.
ACS Nano ; 13(4): 4160-4173, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30933473

RESUMO

Superhydrophobicity has received significant attention over the past three decades owing to its significant potential in self-cleaning, anti-icing and drag reduction surfaces, energy-harvesting devices, antibacterial coatings, and enhanced heat transfer applications. Superhydrophobicity can be obtained via the roughening of an intrinsically hydrophobic surface, the creation of a re-entrant geometry, or by the roughening of a hydrophilic surface followed by a conformal coating of a hydrophobic material. Intrinsically hydrophobic surfaces have poor thermophysical properties, such as thermal conductivity, and thus are not suitable for heat transfer applications. Re-entrant geometries, although versatile in applications where droplets are deposited, break down during spatially random nucleation and flood the surface. Chemical functionalization of rough metallic substrates, although promising, is not utilized because of the poor durability of conformal hydrophobic coatings. Here we develop a radically different approach to achieve stable superhydrophobicity. By utilizing laser processing and thermal oxidation of copper (Cu) to create a high surface energy hierarchical copper oxide (CuO), followed by repeatable and passive atmospheric adsorption of hydrophobic volatile organic compounds (VOCs), we show that stable superhydrophobicity with apparent advancing contact angles ≈160° and contact angle hysteresis as low as ≈20° can be achieved. We exploit the structure length scale and structure geometry-dependent VOC adsorption dynamics to rationally design CuO nanowires with enhanced superhydrophobicity. To gain an understanding of the VOC adsorption physics, we utilized X-ray photoelectron and ion mass spectroscopy to identify the chemical species deposited on our surfaces in two distinct locations: Urbana, IL, United States and Beijing, China. To test the stability of the atmosphere-mediated superhydrophobic surfaces during heterogeneous nucleation, we used high-speed optical microscopy to demonstrate the occurrence of dropwise condensation and stable coalescence-induced droplet jumping. Our work not only provides rational design guidelines for developing passively durable superhydrophobic surfaces with excellent flooding-resistance and self-healing capability but also sheds light on the key role played by the atmosphere in governing wetting.

12.
ACS Appl Bio Mater ; 2(7): 2726-2737, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030808

RESUMO

Biofouling disrupts the surface functionality and integrity of engineered substrates. A variety of natural materials such as plant leaves and insect wings have evolved sophisticated physical mechanisms capable of preventing biofouling. Over the past decade, several reports have pinpointed nanoscale surface topography as an important regulator of surface adhesion and growth of bacteria. Although artificial nanoengineered features have been used to create bactericidal materials that kill adhered bacteria, functional surfaces capable of synergistically providing antiadhesion and bactericidal properties remain to be developed. Furthermore, fundamental questions pertaining to the need for intrinsic hydrophobicity to achieve bactericidal performance and the role of structure length scale (nano vs micro) are still being explored. Here, we demonstrate highly scalable, cost-effective, and efficient nanoengineered multifunctional surfaces that possess both antiadhesion and bactericidal properties on industrially relevant copper (Cu) and aluminum (Al) substrates. We characterize antiadhesion and bactericidal performance using a combination of scanning electron microscopy (SEM), atomic force microscopy (AFM), live/dead bacterial staining and imaging, as well as solution-phase and Petrifilm measurements of bacterial viability. Our results showed that nanostructures created on both Cu and Al were capable of physical deformation of adhered Escherichia coli bacteria. Bacterial viability measurements on both Cu and Al indicated a complex interaction between the antiadhesion and bactericidal nature of these materials and their surface topography, chemistry, and structure. Increased superhydrophobicity greatly decreased bacterial adhesion while not significantly influencing surface bactericidal performance. Furthermore, we observed that more densely packed nanoscale structures improved antiadhesion properties when compared to larger features, even over extended time scales of up to 24 h. Our data suggests that the superhydrophobic Al substrate possesses superior antiadhesion and bactericidal effects, even over long time courses. The techniques and insights presented here will inform future work on antiadhesion and bactericidal multifunctional surfaces and enable their rational design.

13.
Sci Rep ; 8(1): 4869, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29559665

RESUMO

Geologic storage of carbon dioxide (CO2) is considered a viable strategy for significantly reducing anthropogenic CO2 emissions into the atmosphere; however, understanding the flow mechanisms in various geological formations is essential for safe storage using this technique. This study presents, for the first time, a two-phase (CO2 and brine) flow visualization under reservoir conditions (10 MPa, 50 °C) for a highly heterogeneous conglomerate core obtained from a real CO2 storage site. Rock heterogeneity and the porosity variation characteristics were evaluated using X-ray computed tomography (CT). Multiphase flow tests with an in-situ imaging technology revealed three distinct CO2 saturation distributions (from homogeneous to non-uniform) dependent on compositional complexity. Dense discontinuity networks within clasts provided well-connected pathways for CO2 flow, potentially helping to reduce overpressure. Two flow tests, one under capillary-dominated conditions and the other in a transition regime between the capillary and viscous limits, indicated that greater injection rates (potential causes of reservoir overpressure) could be significantly reduced without substantially altering the total stored CO2 mass. Finally, the capillary storage capacity of the reservoir was calculated. Capacity ranged between 0.5 and 4.5%, depending on the initial CO2 saturation.

14.
Anal Bioanal Chem ; 410(7): 1911-1921, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29380018

RESUMO

Laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS) is an emerging bioanalytical tool for direct imaging and analysis of biological tissues. Performing ionization in an ambient environment, this technique requires little sample preparation and no additional matrix, and can be performed on natural, uneven surfaces. When combined with optical microscopy, the investigation of biological samples by LAESI allows for spatially resolved compositional analysis. We demonstrate here the applicability of LAESI-IMS for the chemical analysis of thin, desiccated biological samples, specifically Neotibicen pruinosus cicada wings. Positive-ion LAESI-IMS accurate ion-map data was acquired from several wing cells and superimposed onto optical images allowing for compositional comparisons across areas of the wing. Various putative chemical identifications were made indicating the presence of hydrocarbons, lipids/esters, amines/amides, and sulfonated/phosphorylated compounds. With the spatial resolution capability, surprising chemical distribution patterns were observed across the cicada wing, which may assist in correlating trends in surface properties with chemical distribution. Observed ions were either (1) equally dispersed across the wing, (2) more concentrated closer to the body of the insect (proximal end), or (3) more concentrated toward the tip of the wing (distal end). These findings demonstrate LAESI-IMS as a tool for the acquisition of spatially resolved chemical information from fragile, dried insect wings. This LAESI-IMS technique has important implications for the study of functional biomaterials, where understanding the correlation between chemical composition, physical structure, and biological function is critical. Graphical abstract Positive-ion laser-ablation electrospray ionization mass spectrometry coupled with optical imaging provides a powerful tool for the spatially resolved chemical analysis of cicada wings.


Assuntos
Hemípteros/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Asas de Animais/química , Amidas/análise , Aminas/análise , Animais , Ésteres/análise , Hemípteros/anatomia & histologia , Hidrocarbonetos/análise , Terapia a Laser , Lipídeos/análise , Compostos de Fósforo/análise , Sulfonas/análise
15.
Sci Robot ; 3(16)2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33141752

RESUMO

Robotic and athletic achievements shared the stage at the PyeongChang 2018 Winter Olympic Games.

16.
Uisahak ; 27(3): 295-322, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30679408

RESUMO

In the 15th century, Joseon dynasty's goal for the stabilization of the ruling system, the ideological freedom of the era, and the necessity of medicine due to the introduction of Jin and Yuan dynasty's medicine led to the increased interest in medicine by the nobility along with tolerant practice. The practice of reading medical books is a good example of this institutional demonstration. However, by the end of the 15th century, a noticeable change had taken place. Within the nobility, there was an ideological rigidity regarding technology other than those of Confucianism, as the nobility became concentrated on the principles of Neo-Confucianism. In addition, as the publication of large-scale editions such as Uibangyuch'wi (the Classified Collection of Medical Prescriptions) came to an end, they have become less inclined to nurture talent at the level of the central government as in the previous period. In addition, as the discrimination against illegitimate children became stronger, technical bureaucrats such as medical officials, which were open to illegitimate children, came to be seen in increasingly disdainful and differentiated manners. From the late Sejong period to the early Seongjong period, the entrance of illegitimate sons into the medical bureaucracy solidified the negligence of medicine by the nobility. After then, the medical bureaucracy came to be monopolized by illegitimate sons. As for illegitimate sons, they were not allowed to enter society through Confucian practices, and as such, the only way for them to enter the government was by continuing to gain experience as technical bureaucrats. Technical posts that became dominated by illegitimate sons became an object of contempt by the nobility, and the cycle reproduced itself with the social perception that legitimate sons of the nobility could not become a medical official. Medical officials from the Yi clan of Yangseong had been legitimate sons and passers of the civil service examination in the 15th century. However, in the 16th century, only illegitimate sons became medical officials. The formation of Jungin (middleclass) in technical posts since the middle of the Joseon period is also related to this phenomenon. The Yi clan of Yangseong that produced medical officials for 130years over four generations since Yi Hyoji, a medical book reading official, is an exemplary case of the change in the social perception in the early Joseon period regarding medical bureaucrats.


Assuntos
Pessoal de Saúde , Ilegitimidade , Confucionismo , Pessoal de Saúde/história , História do Século XV , História do Século XVI , Medicina Tradicional Coreana , Condições Sociais
17.
J Contam Hydrol ; 206: 34-42, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28969864

RESUMO

In this study, a data-driven method for predicting CO2 leaks and associated concentrations from geological CO2 sequestration is developed. Several candidate models are compared based on their reproducibility and predictive capability for CO2 concentration measurements from the Environment Impact Evaluation Test (EIT) site in Korea. Based on the data mining results, a one-dimensional solution of the advective-dispersive equation for steady flow (i.e., Ogata-Banks solution) is found to be most representative for the test data, and this model is adopted as the data model for the developed method. In the validation step, the method is applied to estimate future CO2 concentrations with the reference estimation by the Ogata-Banks solution, where a part of earlier data is used as the training dataset. From the analysis, it is found that the ensemble mean of multiple estimations based on the developed method shows high prediction accuracy relative to the reference estimation. In addition, the majority of the data to be predicted are included in the proposed quantile interval, which suggests adequate representation of the uncertainty by the developed method. Therefore, the incorporation of a reasonable physically-based data model enhances the prediction capability of the data-driven model. The proposed method is not confined to estimations of CO2 concentration and may be applied to various real-time monitoring data from subsurface sites to develop automated control, management or decision-making systems.


Assuntos
Dióxido de Carbono/análise , Água Subterrânea , Modelos Teóricos , Sequestro de Carbono , Monitoramento Ambiental/métodos , Água Subterrânea/análise , Água Subterrânea/química , Hidrologia/métodos , Reprodutibilidade dos Testes , República da Coreia
18.
Langmuir ; 33(43): 12007-12015, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28949142

RESUMO

Droplet evaporation is an important phenomenon governing many man-made and natural processes. Characterizing the rate of evaporation with high accuracy has attracted the attention of numerous scientists over the past century. Traditionally, researchers have studied evaporation by observing the change in the droplet size in a given time interval. However, the transient nature coupled with the significant mass-transfer-governed gas dynamics occurring at the droplet three-phase contact line makes the classical method crude. Furthermore, the intricate balance played by the internal and external flows, evaporation kinetics, thermocapillarity, binary-mixture dynamics, curvature, and moving contact lines makes the decoupling of these processes impossible with classical transient methods. Here, we present a method to measure the rate of evaporation of spatially and temporally steady droplets. By utilizing a piezoelectric dispenser to feed microscale droplets (R ≈ 9 µm) to a larger evaporating droplet at a prescribed frequency, we can both create variable-sized droplets on any surface and study their evaporation rate by modulating the piezoelectric droplet addition frequency. Using our steady technique, we studied water evaporation of droplets having base radii ranging from 20 to 250 µm on surfaces of different functionalities (45° ≤ θa,app ≤ 162°, where θa,app is the apparent advancing contact angle). We benchmarked our technique with the classical unsteady method, showing an improvement of 140% in evaporation rate measurement accuracy. Our work not only characterizes the evaporation dynamics on functional surfaces but also provides an experimental platform to finally enable the decoupling of the complex physics governing the ubiquitous droplet evaporation process.

19.
ACS Appl Mater Interfaces ; 9(32): 27173-27184, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28719187

RESUMO

Evolutionary pressure has pushed many extant species to develop micro/nanostructures that can significantly affect wettability and enable functionalities such as droplet jumping, self-cleaning, antifogging, antimicrobial, and antireflectivity. In particular, significant effort is underway to understand the insect wing surface structure to establish rational design tools for the development of novel engineered materials. Most studies, however, have focused on superhydrophobic wings obtained from a single insect species, in particular, the Psaltoda claripennis cicada. Here, we investigate the relationship between the spatially dependent wing wettability, topology, and droplet jumping behavior of multiple cicada species and their habitat, lifecycle, and interspecies relatedness. We focus on cicada wings of four different species: Neotibicen pruinosus, N. tibicen, Megatibicen dorsatus, and Magicicada septendecim and take a comparative approach. Using spatially resolved microgoniometry, scanning electron microscopy, atomic force microscopy, and high speed optical microscopy, we show that within cicada species, the wettability of wings is spatially homogeneous across wing cells. All four species were shown to have truncated conical pillars with widely varying length scales ranging from 50 to 400 nm in height. Comparison of the wettability revealed three cicada species with wings that are superhydrophobic (>150°) with low contact angle hysteresis (<5°), resulting in stable droplet jumping behavior. The fourth, more distantly related species (Ma. septendecim) showed only moderate hydrophobic behavior, eliminating some of the beneficial surface functional aspects for this cicada. Correlation between cicada habitat and wing wettability yielded little connection as wetter, swampy environments do not necessarily equate to higher measured wing hydrophobicity. The results, however, do point to species relatedness and reproductive strategy as a closer proxy for predicting wettability and surface structure and resultant enhanced wing surface functionality. This work not only elucidates the differences between inter- and intraspecies cicada wing topology, wettability, and water shedding behavior but also enables the development of rational design tools for the manufacture of artificial surfaces for energy and water applications.


Assuntos
Hemípteros , Animais , Ecossistema , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Molhabilidade , Asas de Animais
20.
Fitoterapia ; 99: 347-51, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25451795

RESUMO

The ethanolic extract of the needles of Pinus thunbergii was found to suppress antigen mediated degranulation of rat basophilic leukemia (RBL-2H3) cells. A new neolignan glycoside, named pinusthunbergiside A (1), as well as six known neolignan glycosides (2-7) were isolated from the ethanolic extract using bioassay-guided fractionation. Their structures were elucidated by a combination of 1D and 2D NMR, HRESI-MS, and circular dichroism (CD) data. Compounds 2-7 were found for the first time in this plant. The inhibitory effects of isolated constituents on the release of ß-hexosaminidase from RBL-2H3 cells were examined, and compounds 2, 3, 5, and 6 were found to show the inhibitory activity with IC50 values ranging between 52.3 and 75.3 µM.


Assuntos
Degranulação Celular/efeitos dos fármacos , Glicosídeos/química , Lignanas/química , Pinus/química , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Concentração Inibidora 50 , Lignanas/isolamento & purificação , Estrutura Molecular , Folhas de Planta/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA