Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 907: 167781, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37844643

RESUMO

Infections of Legionnaires' disease in the United States caused by Legionella have increased ninefold between the years 2000-2018. Legionella harbored in biofilms or inside amoeba within premise plumbing can be more resistant to disinfectants, thus causing treatment challenges. Ultraviolet-light emitting diodes (UV-LEDs) are an emerging water disinfection technology with several advantages over conventional UV lamps. In this study, we evaluated the effects of UV-LEDs (255, 265, and 285 nm), a low-pressure (LP) mercury UV lamp (254 nm), and a bandpass filtered medium-pressure (MP) mercury UV lamp (220 nm) on properties and inactivation of three strains of L. pneumophila serogroup 1. The UV-LEDs emitting at 255 and 265 nm showed greater inactivation performance against all the strains compared to the UV-LED at 285 nm and the LP UV lamp at 254 nm. Our results showed that strains of the same serogroup exhibited different UV sensitivities. Analyses of DNA and protein damage revealed that UV exposure using 254, 255, and 265 nm predominantly causes DNA damage, while protein damage is predominant at 220 nm. Both DNA and protein damage were observed at 285 nm, but the extent of DNA damage was relatively less significant compared to the other wavelengths. Electric energy consumption analysis showed that water treatment using UV-LEDs is currently unsatisfactory compared to conventional LP UV lamps due to the mediocre wall plug efficiency (WPE) of UV-LEDs. However, recent studies indicate that the WPE of UV-LEDs is continuously improving. Overall, our study highlights that UV-LEDs are a promising technology for inactivating waterborne pathogens and have the potential to replace existing UV mercury lamps for water disinfection applications.


Assuntos
Legionella pneumophila , Mercúrio , Purificação da Água , Sorogrupo , Raios Ultravioleta , Desinfecção/métodos , Purificação da Água/métodos , DNA
2.
Environ Sci Technol ; 55(16): 11388-11396, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34310128

RESUMO

Irreversible faradic reactions in reverse electrodialysis (RED) are an emerging concern for scale-up, reducing the overall performance of RED and producing environmentally harmful chemical species. Capacitive RED (CRED) has the potential to generate electricity without the necessity of irreversible faradic reactions. However, there is a critical knowledge gap in the fundamental understanding of the effects of operational stack voltages of CRED on irreversible faradic reactions and the performance of CRED. This study aims to develop an active control strategy to avoid irreversible faradic reactions and pH change in CRED, focusing on the effects of a stack voltage (0.9-5.0 V) on irreversible faradic reactions and power generation. Results show that increasing the initial output voltage of CRED by increasing a stack voltage has an insignificant impact on irreversible faradic reactions, regardless of the stack voltage applied, but a cutoff output voltage of CRED is mainly responsible for controlling irreversible faradic reactions. The CRED system with eliminating irreversible faradic reactions achieved a maximum power density (1.6 W m-2) from synthetic seawater (0.513 M NaCl) and freshwater (0.004 M NaCl). This work suggests that the control of irreversible faradic reactions in CRED can provide stable power generation using salinity gradients in large-scale operations.


Assuntos
Água Doce , Salinidade , Eletricidade , Fenômenos Físicos , Água do Mar
3.
Chem Eng J ; 366: 21-26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275054

RESUMO

Despite municipal chlorination and secondary disinfection, opportunistic waterborne pathogens (e.g., Legionella spp.) persist in public and private water distribution systems. As a potential source of healthcare-acquired infections, this warrants development of novel pathogen removal and inactivation systems. In this study, electrically heatable carbon nanotube (CNT) point-of-use (POU) filters have been designed to remove and inactivate Legionella pneumophila in water. The CNT/polymer composite membranes effectively removed Legionella (> 99.99%) (i.e., below detection limit) and were able to inactive them on the membrane surface at 100% efficiency within 60 s using ohmic heating at 20 V. The novel POU filters could be used as a final barrier to provide efficient rejection of pathogens and thereby simultaneously eliminate microorganisms in public and private water supplies.

4.
Water Res ; 149: 421-431, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472544

RESUMO

Harmful algal blooms are occurring more frequently in fresh water throughout the world. Certain cyanobacteria can produce and release potent toxic compounds, known as cyanotoxins, such as microcystins, cylindrospermopsin, saxitoxin, and anatoxin-a, and as such they have become a human and environmental health concern. Hybrid photocatalytic composites (HPCs) comprising carbon nanotubes on the surface of TiO2 nanotubes were designed in this study. The HPCs have a selective adsorption capacity to cyanotoxins and provide photocatalytic activity to produce reactive oxygen species for the degradation of cyanotoxins. HPCs with 5.2 mg carbon nanotubes/cm2 showed an excellent removal efficiency of microcystins-LR (>95%) at 55.6 L/m2/hr/bar. The HPCs more efficiently removed the relatively larger and more hydrophobic cyanotoxins (i.e., microcystin-LR) than the relatively smaller and more hydrophilic compounds, such as cylindrospermopsin, saxitoxin, and anatoxin-a. With a further increased in the carbon nanotube content to 8.6 mg/cm2, the adsorption capacity of the HPCs for cyanotoxins increased to 70.6% for MC-LR. However, there was significant decrease in the photocatalytic activity of the HPCs for production of reactive oxygen species, and consequently a decrease in the degradation of cyanotoxins. It is considered that this device could be used to provide complete rejection of particles and pathogens, and also to significantly reduce trace organic compounds and harmful algal toxins in emergency water supplies.


Assuntos
Cianobactérias , Nanotubos de Carbono , Água Doce , Proliferação Nociva de Algas , Humanos , Microcistinas , Água
5.
Water Res ; 114: 151-180, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28237783

RESUMO

The goal of the current article is to update new findings in membrane fouling and emerging fouling mitigation strategies reported in recent years (post 2010) as a follow-up to our previous review published in Water Research (2009). According to a systematic review of the literature, membrane bioreactors (MBRs) are still actively investigated in the field of wastewater treatment. Notably, membrane fouling remains the most challenging issue in MBR operation and attracts considerable attention in MBR studies. In this review, we summarized the updated information on foulants composition and characteristics in MBRs, which greatly improves our understanding of fouling mechanisms. Furthermore, the emerging fouling control strategies (e.g., mechanically assisted aeration scouring, in-situ chemical cleaning, enzymatic and bacterial degradation of foulants, electrically assisted fouling mitigation, and nanomaterial-based membranes) are comprehensively reviewed. As a result, it is found that the fundamental understanding of dynamic changes in membrane foulants during a long-term operation is essential for the development and implementation of fouling control methods. Recently developed strategies for membrane fouling control denoted that the improvement of membrane performance is not our ultimate and only goal, less energy consumption and more green/sustainable fouling control ways are more promising to be developed and thus applied in the future. Overall, such a literature review not only demonstrates current challenges and research needs for scientists working in the area of MBR technologies, but also can provide more useful recommendations for industrial communities based on the related application cases.


Assuntos
Membranas Artificiais , Eliminação de Resíduos Líquidos , Reatores Biológicos/microbiologia , Eletricidade , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA