Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (207)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38884494

RESUMO

A key virulence mechanism for many Gram-negative pathogens is the type III secretion system (T3SS), a needle-like appendage that translocates cytotoxic or immunomodulatory effector proteins into host cells. The T3SS is a target for antimicrobial discovery campaigns since it is accessible extracellularly and largely absent from non-pathogenic bacteria. Recent studies demonstrated that the T3SS of Yersinia and Salmonella are regulated by factors responsive to iron and oxygen, which are important niche-specific signals encountered during mammalian infection. Described here is a method for iron starvation of Yersinia pseudotuberculosis, with subsequent optional supplementation of inorganic iron. To assess the impact of oxygen availability, this iron starvation process is demonstrated under both aerobic and anaerobic conditions. Finally, incubating the cultures at the mammalian host temperature of 37 °C induces T3SS expression and allows quantification of Yersinia T3SS activity by visualizing effector proteins released into the supernatant. The steps detailed here offer an advantage over the use of iron chelators in the absence of iron starvation, which is insufficient for inducing robust iron starvation, presumably due to efficient Yersinia iron uptake and scavenging systems. Likewise, acid-washing laboratory glassware is detailed to ensure the removal of residual iron, which is essential for inducing robust iron starvation. Additionally, using a chelating agent is described to remove residual iron from media, and culturing the bacteria for several generations in the absence of iron to deplete bacterial iron stores. By incorporating standard protocols of trichloroacetic acid-induced protein precipitation, SDS-PAGE, and silver staining, this procedure demonstrates accessible ways to measure T3SS activity. While this procedure is optimized for Y. pseudotuberculosis, it offers a framework for studies in pathogens with similar robust iron uptake systems. In the age of antibiotic resistance, these methods can be expanded to assess the efficacy of antimicrobial compounds targeting the T3SS under host-relevant conditions.


Assuntos
Ferro , Sistemas de Secreção Tipo III , Yersinia pseudotuberculosis , Yersinia pseudotuberculosis/metabolismo , Ferro/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Anaerobiose
2.
Proc Natl Acad Sci U S A ; 121(4): e2315592121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38227652

RESUMO

γδ T cells are essential for immune defense and modulating physiological processes. While they have the potential to recognize large numbers of antigens through somatic gene rearrangement, the antigens which trigger most γδ T cell response remain unidentified, and the role of antigen recognition in γδ T cell function is contentious. Here, we show that some γδ T cell receptors (TCRs) exhibit polyspecificity, recognizing multiple ligands of diverse molecular nature. These ligands include haptens, metabolites, neurotransmitters, posttranslational modifications, as well as peptides and proteins of microbial and host origin. Polyspecific γδ T cells are enriched among activated cells in naive mice and the responding population in infection. They express diverse TCR sequences, have different functional potentials, and include the innate-like γδ T cells, such as the major IL-17 responders in various pathological/physiological conditions. We demonstrate that encountering their antigenic microbiome metabolite maintains their homeostasis and functional response, indicating that their ability to recognize multiple ligands is essential for their function. Human γδ T cells with similar polyspecificity also respond to various immune challenges. This study demonstrates that polyspecificity is a prevalent feature of γδ T cell antigen recognition, which enables rapid and robust T cell responses to a wide range of challenges, highlighting a unique function of γδ T cells.


Assuntos
Antígenos de Grupos Sanguíneos , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Camundongos , Animais , Antígenos , Haptenos
3.
Sci Immunol ; 8(81): eade3525, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000856

RESUMO

The response of gamma delta (γδ) T cells in the acute versus chronic phases of the same infection is unclear. How γδ T cells function in acute Mycobacterium tuberculosis (Mtb) infection is well characterized, but their response during persistent Mtb infection is not well understood, even though most infections with Mtb manifest as a chronic, clinically asymptomatic state. Here, we analyze peripheral blood γδ T cells from a South African adolescent cohort and show that a unique CD8+ γδ T cell subset with features of "memory inflation" expands in chronic Mtb infection. These cells are hyporesponsive to T cell receptor (TCR)-mediated signaling but, like NK cells, can mount robust CD16-mediated cytotoxic responses. These CD8+ γδ T cells comprise a highly focused TCR repertoire, with clonotypes that are Mycobacterium specific but not phosphoantigen reactive. Using multiparametric single-cell pseudo-time trajectory analysis, we identified the differentiation paths that these CD8+ γδ T cells follow to develop into effectors in this infection state. Last, we found that circulating CD8+ γδ T cells also expand in other chronic inflammatory conditions, including cardiovascular disease and cancer, suggesting that persistent antigenic exposure may drive similar γδ T cell effector programs and differentiation fates.


Assuntos
Linfócitos Intraepiteliais , Mycobacterium tuberculosis , Tuberculose , Humanos , Adolescente , Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T CD8-Positivos
4.
PLoS Genet ; 18(7): e1010321, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35901167

RESUMO

The type III secretion system (T3SS) is an appendage used by many bacterial pathogens, such as pathogenic Yersinia, to subvert host defenses. However, because the T3SS is energetically costly and immunogenic, it must be tightly regulated in response to environmental cues to enable survival in the host. Here we show that expression of the Yersinia Ysc T3SS master regulator, LcrF, is orchestrated by the opposing activities of the repressive H-NS/YmoA histone-like protein complex and induction by the iron and oxygen-regulated IscR transcription factor. While deletion of iscR or ymoA has been shown to decrease and increase LcrF expression and type III secretion, respectively, the role of H-NS in this system has not been definitively established because hns is an essential gene in Yersinia. Using CRISPRi knockdown of hns, we show that hns depletion causes derepression of lcrF. Furthermore, we find that while YmoA is dispensable for H-NS binding to the lcrF promoter, YmoA binding to H-NS is important for H-NS repressive activity. We bioinformatically identified three H-NS binding regions within the lcrF promoter and demonstrate binding of H-NS to these sites in vivo using chromatin immunoprecipitation. Using promoter truncation and binding site mutation analysis, we show that two of these H-NS binding regions are important for H-NS/YmoA-mediated repression of the lcrF promoter. Surprisingly, we find that IscR is dispensable for lcrF transcription in the absence of H-NS/YmoA. Indeed, IscR-dependent regulation of LcrF and type III secretion in response to changes in oxygen, such as those Yersinia is predicted to experience during host infection, only occurs in the presence of an H-NS/YmoA complex. These data suggest that, in the presence of host tissue cues that drive sufficient IscR expression, IscR can act as a roadblock to H-NS/YmoA-dependent repression of RNA polymerase at the lcrF promoter to turn on T3SS expression.


Assuntos
Regulação Bacteriana da Expressão Gênica , Yersinia , Proteínas de Bactérias/metabolismo , Histonas/genética , Oxigênio/metabolismo , Yersinia/genética , Yersinia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA