Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 55(7): 1255-65, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24891560

RESUMO

Under light stress, the reaction center-binding protein D1 of PSII is photo-oxidatively damaged and removed from PSII complexes by proteases located in the chloroplast. A protease considered to be responsible for degradation of the damaged D1 protein is the metalloprotease FtsH. We showed previously that the active hexameric FtsH protease is abundant at the grana margin and the grana end membranes, and this homo-complex removes the photodamaged D1 protein in the grana. Here, we showed a change in the distribution of FtsH in spinach thylakoids during excessive illumination by transmission electron microscopy (TEM) and immunogold labeling of FtsH. The change in distribution of the protease was accompanied by structural changes to the thylakoids, which we detected using spinach leaves by TEM after chemical fixation of the samples. Quantitative analyses showed several characteristic changes in the structure of the thylakoids, including shrinkage of the grana, outward bending of the marginal portions of the thylakoids and an increase in the height of the grana stacks under excessive illumination. The increase in the height of the grana stacks may include swelling of the thylakoids and an increase in the partition gaps between the thylakoids. These data strongly suggest that excessive illumination induces partial unstacking of the thylakoids, which enables FtsH to access easily the photodamaged D1 protein. Finally three-dimensional tomography of the grana was recorded to observe the effect of light stress on the overall structure of the thylakoids.


Assuntos
Peptídeo Hidrolases/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Spinacia oleracea/ultraestrutura , Tilacoides/ultraestrutura , Transporte Biológico , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Imageamento Tridimensional , Luz , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Spinacia oleracea/metabolismo , Estresse Fisiológico , Tilacoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA