Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 9: 34, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20144237

RESUMO

BACKGROUND: MRE11 is an important nuclease which functions in the end-resection step of homologous recombination (HR) repair of DNA double-strand breaks (DSBs). As MRE11-deficient ATLD cells exhibit hyper radio-sensitivity and impaired DSB repair, MRE11 inhibitors could possibly function as potent radio-sensitizers. Therefore, we investigated whether a bisbenzamidine derivative, pentamidine, which can inhibit endoexonuclease activity, might influence DSB-induced damage responses via inhibition of MRE11. RESULTS: We first clarified that pentamidine inhibited MRE11 nuclease activity and also reduced ATM kinase activity in vitro. Pentamidine increased the radio-sensitivity of HeLa cells, suggesting that this compound could possibly influence DNA damage response factors in vivo. Indeed, we found that pentamidine reduced the accumulation of gamma-H2AX, NBS1 and phospho-ATM at the sites of DSBs. Furthermore, pentamidine decreased HR activity in vivo. Pentamidine was found to inhibit the acetylation of histone H2A which could contribute both to inhibition of IR-induced focus formation and HR repair. These results suggest that pentamidine might exert its effects by inhibiting histone acetyltransferases. We found that pentamidine repressed the activity of Tip60 acetyltransferase which is known to acetylate histone H2A and that knockdown of Tip60 by siRNA reduced HR activity. CONCLUSION: These results indicate that inhibition of Tip60 as well as hMRE11 nuclease by pentamidine underlies the radiosensitizing effects of this compound making it an excellent sensitizer for radiotherapy or chemotherapy.


Assuntos
Benzamidinas/farmacologia , Dano ao DNA , Histonas/metabolismo , Pentamidina/farmacologia , Acetilação/efeitos dos fármacos , Acetilação/efeitos da radiação , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Raios gama , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Histona Acetiltransferases/antagonistas & inibidores , Humanos , Lisina Acetiltransferase 5 , Proteína Homóloga a MRE11 , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Radiação Ionizante , Recombinação Genética/genética , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo
2.
Anal Biochem ; 338(2): 245-52, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15745744

RESUMO

Since the development of affinity chromatography, affinity purification technology has been applied to many aspects of biological research, becoming an indispensable tool. Efficient strategies for the identification of biologically active compounds based on biochemical specificity have not yet been established, despite widespread interest in identifying chemicals that directly alter biomolecular functions. Here, we report a novel method for purifying chemicals that specifically interact with a target biomolecule using reverse affinity beads, a receptor-immobilized high-performance solid-phase matrix. When FK506-binding protein 12 (FKBP12) immobilized beads were used in this process, FK506 was efficiently purified in one step either from a mixture of chemical compounds or from fermented broth extract. The reverse affinity beads facilitated identification of drug/receptor complex binding proteins by reconstitution of immobilized ligand/receptor complexes on the beads. When FKBP12/FK506 and FKBP12/rapamycin complexes were immobilized, calcineurin and FKBP/rapamycin-associated protein were purified from a crude cell extract, respectively. These data indicate that reverse affinity beads are powerful tools for identification of both specific ligands and proteins that interact with receptor/ligand complexes.


Assuntos
Cromatografia de Afinidade/métodos , Proteína 1A de Ligação a Tacrolimo/química , Tacrolimo/isolamento & purificação , Animais , Ligantes , Microesferas , Ratos , Tacrolimo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA