Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Ther Med ; 28(1): 285, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38800048

RESUMO

Non-alcoholic steatohepatitis (NASH) is a fatty liver disease that is not caused by alcohol consumption and is characterized by fatty degeneration, inflammation and hepatocellular damage. Therefore, predicting future fibrosis is critical in the early stages of NASH to prevent disease progression. The present study examined histological changes in the liver as well as microRNA (miR/miRNA) expression changes in the liver and serum of NASH mice model to identify potential biomarker candidates that could predict early fibrosis. This study used 6-week-old C57BL/6NJcl male mice and fed the control with a standard solid diet (CE-2) for breeding and propagation and NASH groups with a high-fat diet [choline-deficient high-fat and 0.1% (w/v) methionine supplemented diet], respectively. Agilent Technologies miRNA microarray was used to investigate microRNA expression in the liver and serum. Hematoxylin and eosin staining of the livers of the NASH group mice during the second week of feeding revealed fatty degeneration, balloon-like degeneration and inflammatory cell infiltration, confirming that the mice were in a state of NASH. The livers of the NASH group mice at 6 weeks of feeding showed fibrosis. Microarray analysis revealed that miRNAs were upregulated and 47 miRNAs were downregulated in the liver of the NASH group. Pathway analysis using OmicsNet predicted miR-29 to target collagen genes. Furthermore, miR-29 was downregulated in the livers of NASH-induced mice but upregulated in serum. These findings suggested that lower miR-29 expression in NASH-induced liver would increase collagen expression and fibrosis. Early liver fibrosis suggests that miR-29 leaks from the liver into the bloodstream, and elevated serum miR-29 levels may be a predictive biomarker for early liver fibrosis.

2.
Med Int (Lond) ; 4(1): 7, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283130

RESUMO

Fatty liver is a condition of excessive triglyceride accumulation in hepatocytes. Additionally, hepatocytes exhibit a high degree of fat droplet accumulation during excessive alcohol consumption and metabolic syndrome. However, the molecular mechanisms involved in fat droplet formation remain unknown. The present study used an in vitro fatty liver formation model of the human liver cancer cell line, HepG2, to comprehensively search for fat droplet formation-related genes, and which exhibit changes in expression during fat droplet formation. Microarray analysis with extracted total RNA determined the genes that are involved in fat droplet formation and their expression was confirmed using quantitative polymerase chain reaction following the culture of the HepG2 cells in culture medium containing 0, 50, 200 and 500 µM of oleic acid for 24 h. The results revealed 142 genes demonstrating increased expression levels by >2.0-fold with oleic acid treatment and 426 genes demonstrating decreased expression levels. Perilipin 2 (PLIN2) was estimated as the gene most closely associated with fatty liver. Lipid droplet formation in the HepG2 cells induced by oleic acid led to the upregulation of PLIN2 in a concentration-dependent manner. On the whole, the findings of the present study indicate the involvement of genes in oleic acid-induced lipid droplet formation in HepG2 cells; PLIN2 in particular may play a crucial role in this process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA