Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 32(12): e4823, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37906694

RESUMO

Genetic code expansion enables site-specific photo-crosslinking by introducing photo-reactive non-canonical amino acids into proteins at defined positions during translation. This technology is widely used for analyzing protein-protein interactions and is applicable in mammalian cells. However, the identification of the crosslinked region still remains challenging. Here, we developed a new method to identify the crosslinked region by pre-installing a site-specific cleavage site, an α-hydroxy acid (Nε -allyloxycarbonyl-α-hydroxyl-l-lysine acid, AllocLys-OH), into the target protein. Alkaline treatment cleaves the crosslinked complex at the position of the α-hydroxy acid residue and thus helps to identify which side of the cleavage site, either closer to the N-terminus or C-terminus, the crosslinked site is located within the target protein. A series of AllocLys-OH introductions narrows down the crosslinked region. By applying this method, we identified the crosslinked regions in lysosomal-associated membrane protein type 2A (LAMP2A), a receptor of chaperone-mediated autophagy, in mammalian cells. The results suggested that at least two interfaces are involved in the homophilic interaction, which requires a trimeric or higher oligomeric assembly of adjacent LAMP2A molecules. Thus, the combination of site-specific crosslinking and site-specific cleavage promises to be useful for revealing binding interfaces and protein complex geometries.


Assuntos
Hidroxiácidos , Mamíferos , Animais , Proteínas de Membrana Lisossomal
2.
Exp Cell Res ; 411(1): 112986, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942188

RESUMO

Chaperone-mediated autophagy (CMA) is a unique proteolytic pathway, in which cytoplasmic proteins recognized by heat shock cognate protein 70 (Hsc70/HSPA8) are transported into lysosomes for degradation. The substrate/chaperone complex binds to the cytosolic tail of the lysosomal-associated membrane protein type 2A (LAMP2A), but whether the interaction between Hsc70 and LAMP2A is direct or mediated by other molecules has remained to be elucidated. The structure of LAMP2A comprises a large lumenal domain composed of two domains, both with the ß-prism fold, a transmembrane domain and a short cytoplasmic tail. We previously reported the structural basis for the homophilic interaction of the lumenal domains of LAMP2A, using site-specific photo-crosslinking and/or steric hindrance within cells. In the present study, we introduced a photo-crosslinker into the cytoplasmic tail of LAMP2A and successfully detected its crosslinking with Hsc70, revealing this direct interaction for the first time. Furthermore, we demonstrated that the truncation of the membrane-distal domain within the lumenal domain of LAMP2A reduced the amount of Hsc70 that coimmunoprecipitated with LAMP2A. Our present results suggested that the two-domain architecture of the lumenal domains of LAMP2A underlies the interaction with Hsc70 at the cytoplasmic surface of the lysosome.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Citoplasma/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas de Choque Térmico HSC70/química , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/química
3.
Autophagy ; 17(12): 4286-4304, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33849387

RESUMO

LAMP1 (lysosomal-associated membrane protein 1) and LAMP2 are the most abundant protein components of lysosome membranes. Both LAMPs have common structures consisting of a large lumenal domain composed of two domains (N-domain and C-domain, which are membrane-distal and -proximal, respectively), both with the ß-prism fold, a transmembrane domain, and a short cytoplasmic tail. LAMP2 is involved in various aspects of autophagy, and reportedly forms high-molecular weight complexes at the lysosomal membrane. We previously showed that LAMP2 molecules coimmunoprecipitated with each other, but whether the homophilic interaction is direct or indirect has remained to be elucidated. In the present study, we demonstrated the direct homophilic interaction of mouse LAMP2A molecules, using expanded genetic code technologies that generate photo-crosslinking and/or steric hindrance at specified interfaces. Specifically, the results suggested that LAMP2A molecules assemble by facing each other with one side of the ß-prism (defined as side A) of the C-domains. The N-domain truncation, which increased the coimmunoprecipitation of LAMP2A molecules in our previous study, permitted the nonspecific involvement of both sides of the ß-prism (side A and side B). Thus, the presence of the N-domain restricts the LAMP2A interactions to side A-specific. The truncation of LAMP2A impaired the recruitment of GAPDH (a CMA-substrate) fused to the HaloTag protein to the surface of late endosomes/lysosomes (LE/Lys) and affected a process that generates LE/Lys. The present study revealed that the homophilic interaction of LAMP2A is direct, and the side A-specific, homophilic interaction of LAMP2A is required for the functional aspects of LAMP2A.Abbreviations: Aloc-Lys: Nε-allyloxycarbonyl-l-lysine; CMA: chaperone-mediated autophagy; FFE: free-flow electrophoresis; GAPDH-HT: glyceraldehyde-3-phosphate dehydrogenase fused to HaloTag protein; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LBPA: lysobisphosphatidic acid; LE/Lys: late endosome/lysosomes; MEFs: mouse embryonic fibroblasts; pBpa: p-benzoyl- l-phenylalanine.


Assuntos
Autofagia , Chaperonas Moleculares , Animais , Autofagia/genética , Fibroblastos/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo , Camundongos , Chaperonas Moleculares/metabolismo
4.
Biochem Biophys Res Commun ; 546: 35-39, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33561746

RESUMO

Most of the currently approved therapeutic antibodies are of the immunoglobulin gamma (IgG) κ isotype, leaving a vast opportunity for the use of IgGλ in medical treatments. The incorporation of designer amino acids into antibodies enables efficient and precise manufacturing of antibody chemical conjugates. Useful conjugation sites have been explored in the constant domain of the human κ-light chain (LCκ), which is no more than 38% identical to its LCλ counterpart in amino acid sequence. In the present study, we used an expanded genetic code for site-specifically incorporating Nε-(o-azidobenzyloxycarbonyl)-l-lysine (o-Az-Z-Lys) into the antigen-binding fragment (Fab) of an IgGλ, cixutumumab. Ten sites in the LCλ constant domain were found to support efficient chemical conjugation exploiting the bio-orthogonal azido chemistry. Most of the identified positions are located in regions that differ between the two light chain isotypes, thus being specific to the λ isotype. Finally, o-Az-Z-Lys was incorporated into the Fab fragments of cixutumumab and trastuzumab to chemically combine them; the resulting bispecific Fab-dimers showed a strong antagonistic activity against a cancer cell line. The present results expand the utility of the chemical conjugation method to the whole spectrum of humanized antibodies, including the λ isotype.


Assuntos
Código Genético , Imunoconjugados/química , Imunoconjugados/genética , Cadeias lambda de Imunoglobulina/química , Cadeias lambda de Imunoglobulina/genética , Sequência de Aminoácidos , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Humanos , Imunoconjugados/imunologia , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Isotipos de Imunoglobulinas/química , Isotipos de Imunoglobulinas/genética , Isotipos de Imunoglobulinas/imunologia , Cadeias kappa de Imunoglobulina/química , Cadeias kappa de Imunoglobulina/genética , Cadeias kappa de Imunoglobulina/imunologia , Cadeias lambda de Imunoglobulina/imunologia , Lisina/química , Lisina/genética , Modelos Moleculares , Multimerização Proteica , Receptor ErbB-2/imunologia , Receptor IGF Tipo 1/imunologia
5.
Biochem Biophys Rep ; 17: 93-96, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30582013

RESUMO

In the present study, we attempted to control the pH profile of the catalytic activity of the industrially relevant alkaline protease KP-43, by incorporating 3-nitro-l-tyrosine and 3-chloro-l-tyrosine at and near the catalytic site. Thirty KP-43 variants containing these non-natural amino acids at the specific positions were synthesized in Escherichia coli host cells with expanded genetic codes. The variant with 3-nitrotyrosine at position 205, near the substrate binding site, retained its catalytic activity at the neutral pH and showed a 60% activity reduction at pH 10.5. This reduction in the alkaline domain is desirable for enhancing the stability of the enzyme in the liquid laundary detergent, whereas the wild-type molecule showed a 20% increase in response to the same pH shift. The engineered pH dependency of the activity of the variant was ascribed partly to a lowered substrate affinity under the alkaline conditions, in which the incorporated 3-nitrotyrosine was probably charged negatively due to the phenolic pK a lower than that of tyrosine.

6.
Molecules ; 23(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261594

RESUMO

Genetic code expansion has largely relied on two types of the tRNA-aminoacyl-tRNA synthetase pairs. One involves pyrrolysyl-tRNA synthetase (PylRS), which is used to incorporate various lysine derivatives into proteins. The widely used PylRS from Methanosarcinaceae comprises two distinct domains while the bacterial molecules consist of two separate polypeptides. The recently identified PylRS from Candidatus Methanomethylophilus alvus (CMaPylRS) is a single-domain, one-polypeptide enzyme that belongs to a third category. In the present study, we showed that the PylRS-tRNAPyl pair from C. M. alvus can incorporate lysine derivatives much more efficiently (up to 14-times) than Methanosarcinaceae PylRSs in Escherichia coli cell-based and cell-free systems. Then we investigated the tRNA and amino-acid recognition by CMaPylRS. The cognate tRNAPyl has two structural idiosyncrasies: no connecting nucleotide between the acceptor and D stems and an additional nucleotide in the anticodon stem and it was found that these features are hardly recognized by CMaPylRS. Lastly, the Tyr126Ala and Met129Leu substitutions at the amino-acid binding pocket were shown to allow CMaPylRS to recognize various derivatives of the bulky Nε-benzyloxycarbonyl-l-lysine (ZLys). With the high incorporation efficiency and the amenability to engineering, CMaPylRS would enhance the availability of lysine derivatives in expanded codes.


Assuntos
Aminoacil-tRNA Sintetases/química , Código Genético , Lisina/química , Methanosarcinaceae/enzimologia , Biossíntese de Proteínas , RNA de Transferência/química , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Lisina/genética , Lisina/metabolismo , Modelos Moleculares , RNA de Transferência/genética , RNA de Transferência/metabolismo , Homologia de Sequência , Especificidade por Substrato
7.
ACS Synth Biol ; 7(9): 2170-2176, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30063837

RESUMO

In the present study, we simultaneously incorporated two types of synthetic components into microbial transglutaminase (MTG) from Streptoverticillium mobaraense to enhance the utility of this industrial enzyme. The first amino acid, 3-chloro-l-tyrosine, was incorporated into MTG in response to in-frame UAG codons to substitute for the 15 tyrosine residues separately. The two substitutions at positions 20 and 62 were found to each increase thermostability of the enzyme, while the seven substitutions at positions 24, 34, 75, 146, 171, 217, and 310 exhibited neutral effects. Then, these two stabilizing chlorinations were combined with one of the neutral ones, and the most stabilized variant was found to contain 3-chlorotyrosines at positions 20, 62, and 171, exhibiting a half-life 5.1-fold longer than that of the wild-type enzyme at 60 °C. Next, this MTG variant was further modified by incorporating the α-hydroxy acid analogue of Nε-allyloxycarbonyl-l-lysine (AlocKOH), specified by the AGG codon, at the end of the N-terminal inhibitory peptide. We used an Escherichia coli strain previously engineered to have a synthetic genetic code with two codon reassignments for synthesizing MTG variants containing both 3-chlorotyrosine and AlocKOH. The ester bond, thus incorporated into the main chain, efficiently self-cleaved under alkaline conditions (pH 11.0), achieving the autonomous maturation of the thermostabilized MTG. The results suggested that synthetic genetic codes with multiple codon reassignments would be useful for developing the novel designs of enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Engenharia Genética , Streptomyces/enzimologia , Transglutaminases/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Código Genético , Meia-Vida , Lisina/análogos & derivados , Lisina/metabolismo , Estabilidade Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Temperatura , Transglutaminases/genética , Tirosina/análogos & derivados , Tirosina/metabolismo
8.
Bioconjug Chem ; 28(8): 2099-2108, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28727448

RESUMO

The site-specific chemical conjugation of proteins, following synthesis with an expanded genetic code, promises to advance antibody-based technologies, including antibody drug conjugation and the creation of bispecific Fab dimers. The incorporation of non-natural amino acids into antibodies not only guarantees site specificity but also allows the use of bio-orthogonal chemistry. However, the efficiency of amino acid incorporation fluctuates significantly among different sites, thereby hampering the identification of useful conjugation sites. In this study, we applied the codon reassignment technology to achieve the robust and efficient synthesis of chemically functionalized antibodies containing Nε-(o-azidobenzyloxycarbonyl)-l-lysine (o-Az-Z-Lys) at defined positions. This lysine derivative has a bio-orthogonally reactive group at the end of a long side chain, enabling identification of multiple new positions in Fab-constant domains, allowing chemical conjugation with high efficiency. An X-ray crystallographic study of a Fab variant with o-Az-Z-Lys revealed high-level exposure of the azido group to solvent, with six of the identified positions subsequently used to engineer "Variabodies", a novel antibody format allowing various connections between two Fab molecules. Our findings indicated that some of the created Variabodies exhibited agonistic activity in cultured cells as opposed to the antagonistic nature of antibodies. These results showed that our approach greatly enhanced the availability of antibodies for chemical conjugation and might aid in the development of new therapeutic antibodies.


Assuntos
Anticorpos/química , Anticorpos/genética , Código Genético , Azidas/química , Linhagem Celular Tumoral , Química Click , Códon/genética , Escherichia coli/genética , Humanos , Lisina/química , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Trastuzumab/química , Trastuzumab/genética
9.
Bioconjug Chem ; 27(1): 198-206, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26625213

RESUMO

Z-Lysine (ZLys) is a lysine derivative with a benzyloxycarbonyl group linked to the ε-nitrogen. It has been genetically encoded with the UAG stop codon, using the pair of an engineered variant of pyrrolysyl-tRNA synthetase (PylRS) and tRNA(Pyl). In the present study, we designed a novel Z-lysine derivative (AmAzZLys), which is doubly functionalized with amino and azido substituents at the meta positions of the benzyl moiety, and demonstrated its applicability for creating protein conjugates. AmAzZLys was incorporated into proteins in Escherichia coli, by using the ZLys-specific PylRS variant. AmAzZLys was then site-specifically incorporated into a camelid single-domain antibody specific to the epidermal growth factor receptor (EGFR). A one-pot reaction demonstrated that the phenyl amine and azide were efficiently linked to the 5 kDa polyethylene glycol and a fluorescent probe, respectively, through specific bio-orthogonal chemistry. The antibody was then tested for the ability to form a photo-cross-link between its phenylazide moiety and the antigen, while the amino group on the same ring was used for chemical labeling. When incorporated at a selected position in the antibody and exposed to 365 nm light, AmAzZLys formed a covalent bond with the EGFR ectodomain, with the phenylamine moiety labeled fluorescently prior to the reaction. The present results illuminated the versatility of the ZLys scaffold, which can accommodate multiple reactive groups useful for protein conjugation.


Assuntos
Aminoácidos/química , Bioquímica/métodos , Proteínas/química , Anticorpos de Domínio Único/química , Anticorpos/química , Azidas/química , Receptores ErbB/química , Receptores ErbB/imunologia , Corantes Fluorescentes/química , Methanosarcina/enzimologia , Polietilenoglicóis/química , Ressonância de Plasmônio de Superfície
10.
Nucleic Acids Res ; 43(16): 8111-22, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26240376

RESUMO

The immutability of the genetic code has been challenged with the successful reassignment of the UAG stop codon to non-natural amino acids in Escherichia coli. In the present study, we demonstrated the in vivo reassignment of the AGG sense codon from arginine to L-homoarginine. As the first step, we engineered a novel variant of the archaeal pyrrolysyl-tRNA synthetase (PylRS) able to recognize L-homoarginine and L-N(6)-(1-iminoethyl)lysine (L-NIL). When this PylRS variant or HarRS was expressed in E. coli, together with the AGG-reading tRNA(Pyl) CCU molecule, these arginine analogs were efficiently incorporated into proteins in response to AGG. Next, some or all of the AGG codons in the essential genes were eliminated by their synonymous replacements with other arginine codons, whereas the majority of the AGG codons remained in the genome. The bacterial host's ability to translate AGG into arginine was then restricted in a temperature-dependent manner. The temperature sensitivity caused by this restriction was rescued by the translation of AGG to L-homoarginine or L-NIL. The assignment of AGG to L-homoarginine in the cells was confirmed by mass spectrometric analyses. The results showed the feasibility of breaking the degeneracy of sense codons to enhance the amino-acid diversity in the genetic code.


Assuntos
Códon , Escherichia coli/genética , Homoarginina/metabolismo , Biossíntese de Proteínas , Aminoácidos/análise , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Arginina/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/química , Genes Bacterianos , Genes Essenciais , Homoarginina/química , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Engenharia de Proteínas , Proteoma/metabolismo , RNA de Transferência/metabolismo , Supressão Genética
11.
Sci Rep ; 5: 9762, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25985257

RESUMO

Recent advances have fundamentally changed the ways in which synthetic amino acids are incorporated into proteins, enabling their efficient and multiple-site incorporation, in addition to the 20 canonical amino acids. This development provides opportunities for fresh approaches toward addressing fundamental problems in bioengineering. In the present study, we showed that the structural stability of proteins can be enhanced by integrating bulky halogenated amino acids at multiple selected sites. Glutathione S-transferase was thus stabilized significantly (by 5.2 and 5.6 kcal/mol) with 3-chloro- and 3-bromo-l-tyrosines, respectively, incorporated at seven selected sites. X-ray crystallographic analyses revealed that the bulky halogen moieties filled internal spaces within the molecules, and formed non-canonical stabilizing interactions with the neighboring residues. This new mechanism for protein stabilization is quite simple and applicable to a wide range of proteins, as demonstrated by the rapid stabilization of the industrially relevant azoreductase.

12.
Sci Rep ; 5: 9699, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25982672

RESUMO

Escherichia coli is a widely used host organism for recombinant technology, and the bacterial incorporation of non-natural amino acids promises the efficient synthesis of proteins with novel structures and properties. In the present study, we developed E. coli strains in which the UAG codon was reserved for non-natural amino acids, without compromising the reproductive strength of the host cells. Ninety-five of the 273 UAG stop codons were replaced synonymously in the genome of E. coli BL21(DE3), by exploiting the oligonucleotide-mediated base-mismatch-repair mechanism. This genomic modification allowed the safe elimination of the UAG-recognizing cellular component (RF-1), thus leaving the remaining 178 UAG codons with no specific molecule recognizing them. The resulting strain B-95.ΔA grew as vigorously as BL21(DE3) in rich medium at 25-42°C, and its derivative B-95.ΔAΔfabR was better adapted to low temperatures and minimal media than B-95.ΔA. UAG was reassigned to synthetic amino acids by expressing the specific pairs of UAG-reading tRNA and aminoacyl-tRNA synthetase. Due to the preserved growth vigor, the B-95.ΔA strains showed superior productivities for hirudin molecules sulfonated on a particular tyrosine residue, and the Fab fragments of Herceptin containing multiple azido groups.


Assuntos
Códon de Terminação , Escherichia coli/genética , Escherichia coli/metabolismo , Biossíntese de Proteínas/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Inativação de Genes , Engenharia Genética , Genoma Bacteriano , Genômica , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes
13.
EMBO Rep ; 16(2): 192-201, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25527407

RESUMO

Ubiquitylation is a versatile post-translational modification (PTM). The diversity of ubiquitylation topologies, which encompasses different chain lengths and linkages, underlies its widespread cellular roles. Here, we show that endogenous ubiquitin is acetylated at lysine (K)-6 (AcK6) or K48. Acetylated ubiquitin does not affect substrate monoubiquitylation, but inhibits K11-, K48-, and K63-linked polyubiquitin chain elongation by several E2 enzymes in vitro. In cells, AcK6-mimetic ubiquitin stabilizes the monoubiquitylation of histone H2B-which we identify as an endogenous substrate of acetylated ubiquitin-and of artificial ubiquitin fusion degradation substrates. These results characterize a mechanism whereby ubiquitin, itself a PTM, is subject to another PTM to modulate mono- and polyubiquitylation, thus adding a new regulatory layer to ubiquitin biology.


Assuntos
Poliubiquitina/metabolismo , Ubiquitina/metabolismo , Acetilação , Humanos , Processamento de Proteína Pós-Traducional , Ubiquitinação
14.
J Bacteriol ; 194(10): 2606-13, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22427623

RESUMO

We previously reassigned the amber UAG stop triplet as a sense codon in Escherichia coli by expressing a UAG-decoding tRNA and knocking out the prfA gene, encoding release factor 1. UAG triplets were left at the ends of about 300 genes in the genome. In the present study, we showed that the detrimental effect of UAG reassignment could be alleviated by increasing the efficiency of UAG translation instead of reducing the number of UAGs in the genome. We isolated an amber suppressor tRNA(Gln) variant displaying enhanced suppression activity, and we introduced it into the prfA knockout strain, RFzero-q, in place of the original suppressor tRNA(Gln). The resulting strain, RFzero-q3, translated UAG to glutamine almost as efficiently as the glutamine codons, and it proliferated faster than the parent RFzero-q strain. We identified two major factors in this growth enhancement. First, the sucB gene, which is involved in energy regeneration and has two successive UAG triplets at the end, was expressed at a higher level in RFzero-q3 than RFzero-q. Second, the ribosome stalling that occurred at UAG in RFzero-q was resolved in RFzero-q3. The results revealed the importance of "backup" stop triplets, UAA or UGA downstream of UAG, to avoid the deleterious impact of UAG reassignment on the proteome.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Proliferação de Células , Cromossomos Bacterianos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Engenharia Genética , Genoma Bacteriano , Mutação , Fatores de Terminação de Peptídeos/genética , RNA Bacteriano , RNA de Transferência
15.
Biochem Biophys Res Commun ; 411(4): 757-61, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21782790

RESUMO

The genetic encoding of synthetic or "non-natural" amino acids promises to diversify the functions and structures of proteins. We applied rapid codon-reassignment for creating Escherichia coli strains unable to terminate translation at the UAG "stop" triplet, but efficiently decoding it as various tyrosine and lysine derivatives. This complete change in the UAG meaning enabled protein synthesis with these non-natural molecules at multiple defined sites, in addition to the 20 canonical amino acids. UAG was also redefined in the E. coli BL21 strain, suitable for the large-scale production of recombinant proteins, and its cell extract served the cell-free synthesis of an epigenetic protein, histone H4, fully acetylated at four specific lysine sites.


Assuntos
Aminoácidos/genética , Evolução Molecular Direcionada/métodos , Código Genético , Biossíntese de Proteínas/genética , Aminoácidos/química , Códon de Terminação/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Evolução Molecular , Técnicas de Inativação de Genes , Histonas/genética , Histonas/metabolismo , Terminação Traducional da Cadeia Peptídica/genética , Fatores de Terminação de Peptídeos/genética , Plasmídeos/genética
16.
Nucleic Acids Res ; 38(22): 8188-95, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20702426

RESUMO

Most organisms, from Escherichia coli to humans, use the 'universal' genetic code, which have been unchanged or 'frozen' for billions of years. It has been argued that codon reassignment causes mistranslation of genetic information, and must be lethal. In this study, we successfully reassigned the UAG triplet from a stop to a sense codon in the E. coli genome, by eliminating the UAG-recognizing release factor, an essential cellular component, from the bacterium. Only a few genetic modifications of E. coli were needed to circumvent the lethality of codon reassignment; erasing all UAG triplets from the genome was unnecessary. Thus, UAG was assigned unambiguously to a natural or non-natural amino acid, according to the specificity of the UAG-decoding tRNA. The result reveals the unexpected flexibility of the genetic code.


Assuntos
Códon , Escherichia coli/genética , Aminoácidos/metabolismo , Códon de Terminação , Proteínas de Escherichia coli/genética , Deleção de Genes , Fatores de Terminação de Peptídeos/genética
17.
Structure ; 17(3): 335-44, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19278648

RESUMO

We developed an Escherichia coli cell-based system to generate proteins containing 3-iodo-L-tyrosine at desired sites, and we used this system for structure determination by single-wavelength anomalous dispersion (SAD) phasing with the strong iodine signal. Tyrosyl-tRNA synthetase from Methanocaldococcus jannaschii was engineered to specifically recognize 3-iodo-L-tyrosine. The 1.7 A crystal structure of the engineered variant, iodoTyrRS-mj, bound with 3-iodo-L-tyrosine revealed the structural basis underlying the strict specificity for this nonnatural substrate; the iodine moiety makes van der Waals contacts with 5 residues at the binding pocket. E. coli cells expressing iodoTyrRS-mj and the suppressor tRNA were used to incorporate 3-iodo-L-tyrosine site specifically into the ribosomal protein N-acetyltransferase from Thermus thermophilus. The crystal structure of this enzyme with iodotyrosine was determined at 1.8 and 2.2 Angstroms resolutions by SAD phasing at CuK alpha and CrK alpha wavelengths, respectively. The native structure, determined by molecular replacement, revealed no significant structural distortion caused by iodotyrosine incorporation.


Assuntos
Cristalografia por Raios X , Escherichia coli/genética , Monoiodotirosina/química , Engenharia de Proteínas , Acetiltransferases/química , Acetiltransferases/metabolismo , Arilamina N-Acetiltransferase/química , Arilamina N-Acetiltransferase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Methanococcaceae/enzimologia , Methanococcaceae/metabolismo , Monoiodotirosina/genética , Relação Estrutura-Atividade , Thermus thermophilus/enzimologia
18.
J Am Chem Soc ; 128(40): 13184-94, 2006 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17017798

RESUMO

It has been assumed that the pi-electrons of aromatic residues in the catalytic sites of triterpene cyclases stabilize the cationic intermediates formed during the polycyclization cascade of squalene or oxidosqualene, but no definitive experimental evidence has been given. To validate this cation-pi interaction, natural and unnatural aromatic amino acids were site-specifically incorporated into squalene-hopene cyclase (SHC) from Alicyclobacillus acidocaldarius and the kinetic data of the mutants were compared with that of the wild-type SHC. The catalytic sites of Phe365 and Phe605 were substituted with O-methyltyrosine, tyrosine, and tryptophan, which have higher cation-pi binding energies than phenylalanine. These replacements actually increased the SHC activity at low temperature, but decreased the activity at high temperature, as compared with the wild-type SHC. This decreased activity is due to the disorganization of the protein architecture caused by the introduction of the amino acids more bulky than phenylalanine. Then, mono-, di-, and trifluorophenylalanines were incorporated at positions 365 and 605; these amino acids reduce cation-pi binding energies but have van der Waals radii similar to that of phenylalanine. The activities of the SHC variants with fluorophenylalanines were found to be inversely proportional to the number of the fluorine atoms on the aromatic ring and clearly correlated with the cation-pi binding energies of the ring moiety. No serious structural alteration was observed for these variants even at high temperature. These results unambiguously show that the pi-electron density of residues 365 and 605 has a crucial role for the efficient polycyclization reaction by SHC. This is the first report to demonstrate experimentally the involvement of cation-pi interaction in triterpene biosynthesis.


Assuntos
Aminoácidos/química , Liases/química , Alanina/análogos & derivados , Alanina/metabolismo , Bacillus/enzimologia , Bacillus/genética , Cátions/química , Ciclização , Escherichia coli/enzimologia , Escherichia coli/genética , Cinética , Liases/genética , Liases/metabolismo , Conformação Molecular , Mutagênese Sítio-Dirigida , Espectrometria de Massas por Ionização por Electrospray , Esqualeno/análogos & derivados , Esqualeno/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA