Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Physiol Sci ; 71(1): 2, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461483

RESUMO

BACKGROUND: We previously established that the non-neuronal cardiac cholinergic system (NNCCS) is equipped with cardiomyocytes synthesizes acetylcholine (ACh), which is an indispensable endogenous system, sustaining cardiac homeostasis and regulating an inflammatory status, by transgenic mice overexpressing choline acetyltransferase (ChAT) gene in the heart. However, whole body biological significances of NNCCS remain to be fully elucidated. METHODS AND RESULTS: To consolidate the features, we developed heart-specific ChAT knockdown (ChATKD) mice using 3 ChAT-specific siRNAs. The mice developed cardiac dysfunction. Factors causing it included the downregulation of cardiac glucose metabolism along with decreased signal transduction of Akt/HIF-1alpha/GLUT4, leading to poor glucose utilization, impairment of glycolytic metabolites entering the tricarboxylic (TCA) cycle, the upregulation of reactive oxygen species (ROS) production with an attenuated scavenging potency, and the downregulated nitric oxide (NO) production via NOS1. ChATKD mice revealed a decreased vagus nerve activity, accelerated aggression, more accentuated blood basal corticosterone levels with depression-like phenotypes, several features of which were accompanied by cardiac dysfunction. CONCLUSION: The NNCCS plays a crucial role in cardiac homeostasis by regulating the glucose metabolism, ROS synthesis, NO levels, and the cardiac vagus nerve activity. Thus, the NNCCS is suggested a fundamentally crucial system of the heart.


Assuntos
Acetilcolina/metabolismo , Colina O-Acetiltransferase/metabolismo , Miocárdio/metabolismo , Animais , Pressão Sanguínea , Colina O-Acetiltransferase/genética , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Homeostase , Malondialdeído , Camundongos , Camundongos Transgênicos , Interferência de RNA , RNA Interferente Pequeno , Espécies Reativas de Oxigênio , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Tirosina/análogos & derivados , Tirosina/genética , Tirosina/metabolismo
2.
Int Immunopharmacol ; 84: 106459, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32325404

RESUMO

We have previously reported the development of a novel chemical compound, S-Nitroso-N-Pivaloyl-D-Penicillamine (SNPiP), for the upregulation of the non-neuronal cardiac cholinergic system (NNCCS), a cardiac acetylcholine (ACh) synthesis system, which is different from the vagus nerve releasing of ACh as a neurotransmitter. However, it remains unclear how SNPiP could influence cardiac function positively, and whether SNPiP could improve cardiac function under various pathological conditions. SNPiP-injected control mice demonstrated a gradual upregulation in diastolic function without changes in heart rate. In contrast to some parameters in cardiac function that were influenced by SNPiP 24 h or 48 h after a single intraperitoneal (IP) injection, 72 h later, end-systolic pressure, cardiac output, end-diastolic volume, stroke volume, and ejection fraction increased. IP SNPiP injection also improved impaired cardiac function, which is a characteristic feature of the db/db heart, in a delayed fashion, including diastolic and systolic function, following either several consecutive injections or a single injection. SNPiP, a novel NNCCS activator, could be applied as a therapeutic agent for the upregulation of NNCCS and as a unique tool for modulating cardiac function via improvement in diastolic function.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/fisiopatologia , Coração/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Sistema Colinérgico não Neuronal/fisiologia , Penicilamina/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Injeções Intraperitoneais , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos , Doadores de Óxido Nítrico/administração & dosagem , Doadores de Óxido Nítrico/uso terapêutico , Penicilamina/administração & dosagem , Penicilamina/análogos & derivados , Penicilamina/uso terapêutico
3.
Brain Behav Immun ; 81: 122-137, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31176726

RESUMO

We previously reported that the heart-specific choline acetyltransferase (ChAT) gene overexpressing mice (ChAT tg) show specific phenotypes including ischemic tolerance and the CNS stress tolerance. In the current study, we focused on molecular mechanisms responsible for systemic and localized anti-inflammatory phenotypes of ChAT tg. ChAT tg were resistant to systemic inflammation induced by lipopolysaccharides due to an attenuated cytokine response. In addition, ChAT tg, originally equipped with less reactive Kupffer cells, were refractory to brain cold injury, with decreased blood brain barrier (BBB) permeability and reduced inflammation. This is because ChAT tg brain endothelial cells expressed more claudin-5, and their astrocytes were less reactive, causing decreased hypertrophy. Moreover, reconstruction of the BBB integrity in vitro confirmed the consolidation of ChAT tg. ChAT tg were also resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neuronal toxicity due to lower mortality rate and neuronal loss of substantia nigra. Additionally, ChAT tg subjected to MPTP showed attenuated BBB disruption, as evident from reduced sodium fluorescein levels in the brain parenchyma. The activated central cholinergic pathway of ChAT tg lead to anti-convulsive effects like vagus nerve stimulation. However, DSP-4, a noradrenergic neuron-selective neurotoxin against the CNS including the locus ceruleus, abrogated the beneficial phenotype and vagotomy attenuated expression of claudin-5, suggesting the link between the cholinergic pathway and BBB function. Altogether, these findings indicate that ChAT tg possess an anti-inflammatory response potential, associated with upregulated claudin-5, leading to the consolidation of BBB integrity. These characteristics protect ChAT tg against systemic and localized inflammatory pathological disorders, which targets the CNS.


Assuntos
Barreira Hematoencefálica/metabolismo , Colina O-Acetiltransferase/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Acetilcolina/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Colina O-Acetiltransferase/fisiologia , Colinérgicos , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Coração , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Permeabilidade , Substância Negra/metabolismo
4.
Cell Physiol Biochem ; 52(4): 922-934, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30964609

RESUMO

BACKGROUND/AIMS: In a previous study, we reported that cardiomyocytes were equipped with non-neuronal cardiac cholinergic system (NNCCS) to synthesize acetylcholine (ACh), which is indispensable for maintaining the basic physiological cardiac functions. The aim of this study was to identify and characterize a pharmacological inducer of NNCCS. METHODS: To identify a pharmacological inducer of NNCCS, we screened several chemical compounds with chemical structures similar to the structure of S-nitroso-N-acetyl-DL-penicillamine (SNAP). Preliminary investigation revealed that SNAP is an inducer of non-neuronal ACh synthesis. We screened potential pharmacological inducers in H9c2 and HEK293 cells using western blot analysis, luciferase assay, and measurements of intracellular cGMP, NO2 and ACh levels. The effects of the screened compound on cardiac function of male C57BL6 mice were also evaluated using cardiac catheter system. RESULTS: Among the tested compounds, we selected S-nitroso-Npivaloyl-D-penicillamine (SNPiP), which gradually elevated the intracellular cGMP levels and nitric oxide (NO) levels in H9c2 and HEK293 cells. These elevated levels resulted in the gradual transactivation and translation of the choline acetyltransferase gene. Additionally, in vitro and in vivo SNPiP treatment elevated ACh levels for 72 h. SNPiP-treated mice upregulated their cardiac function without tachycardia but with enhanced diastolic function resulting in improved cardiac output. The effect of SNPiP was dependent on SNPiP nitroso group as verified by the ineffectiveness of N-pivaloyl-D-penicillamine (PiP), which lacks the nitroso group. CONCLUSION: SNPiP is identified to be one of the important pharmacological candidates for induction of NNCCS.


Assuntos
Acetilcolina/biossíntese , Débito Cardíaco/efeitos dos fármacos , GMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Doadores de Óxido Nítrico , Sistema Colinérgico não Neuronal/efeitos dos fármacos , Animais , Células HEK293 , Humanos , Masculino , Camundongos , Óxido Nítrico/biossíntese , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia
6.
J Cardiovasc Transl Res ; 10(4): 411-422, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28497301

RESUMO

Cardiomyocytes possess a non-neuronal cardiac cholinergic system (NNCCS) regulated by a positive feedback system; however, its other regulatory mechanisms remain to be elucidated, which include the epigenetic control or regulation by the female sex steroid, estrogen. Here, the NNCCS was shown to possess a circadian rhythm; its activity was upregulated in the light-off phase via histone acetyltransferase (HAT) activity and downregulated in the light-on phase. Disrupting the circadian rhythm altered the physiological choline acetyltransferase (ChAT) expression pattern. The NNCCS circadian rhythm may be regulated by miR-345, independently of HAT, causing decreased cardiac ChAT expression. Murine cardiac ChAT expression and ACh contents were increased more in female hearts than in male hearts. This upregulation was downregulated by treatment with the estrogen receptor antagonist tamoxifen, and in contrast, estrogen reciprocally regulated cardiac miR-345 expression. These results suggest that the NNCCS is regulated by the circadian rhythm and is affected by sexual dimorphism.


Assuntos
Acetilcolina/metabolismo , Colina O-Acetiltransferase/metabolismo , Ritmo Circadiano , Miócitos Cardíacos/enzimologia , Periodicidade , Animais , Células Cultivadas , Colina O-Acetiltransferase/genética , Ritmo Circadiano/efeitos dos fármacos , Epigênese Genética , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Feminino , Histona Acetiltransferases/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Ovariectomia , Fotoperíodo , Caracteres Sexuais , Fatores Sexuais , Tamoxifeno/farmacologia , Fatores de Tempo , Transcrição Gênica , Transfecção
7.
Clin Sci (Lond) ; 130(21): 1913-28, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27528769

RESUMO

We previously developed cardiac ventricle-specific choline acetyltransferase (ChAT) gene-overexpressing transgenic mice (ChAT tgm), i.e. an in vivo model of the cardiac non-neuronal acetylcholine (NNA) system or non-neuronal cardiac cholinergic system (NNCCS). By using this murine model, we determined that this system was responsible for characteristics of resistance to ischaemia, or hypoxia, via the modulation of cellular energy metabolism and angiogenesis. In line with our previous study, neuronal ChAT-immunoreactivity in the ChAT tgm brains was not altered from that in the wild-type (WT) mice brains; in contrast, the ChAT tgm hearts were the organs with the highest expression of the ChAT transgene. ChAT tgm showed specific traits in a central nervous system (CNS) phenotype, including decreased response to restraint stress, less depressive-like and anxiety-like behaviours and anti-convulsive effects, all of which may benefit the heart. These phenotypes, induced by the activation of cardiac NNCCS, were dependent on the vagus nerve, because vagus nerve stimulation (VS) in WT mice also evoked phenotypes similar to those of ChAT tgm, which display higher vagus nerve discharge frequency; in contrast, lateral vagotomy attenuated these traits in ChAT tgm to levels observed in WT mice. Furthermore, ChAT tgm induced several biomarkers of VS responsible for anti-convulsive and anti-depressive-like effects. These results suggest that the augmentation of the NNCCS transduces an effective and beneficial signal to the afferent pathway, which mimics VS. Therefore, the present study supports our hypothesis that activation of the NNCCS modifies CNS to a more stress-resistant state through vagus nerve activity.


Assuntos
Acetilcolina/metabolismo , Sistema Nervoso Central/fisiologia , Ventrículos do Coração/metabolismo , Coração/fisiologia , Animais , Sistema Nervoso Central/enzimologia , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Ventrículos do Coração/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Fisiológico , Nervo Vago/enzimologia , Nervo Vago/metabolismo
8.
Int Immunopharmacol ; 29(1): 181-4, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26072685

RESUMO

Ischemic preconditioning (IPC) renders the targeted organ resistant to prolonged ischemic insults, leading to organoprotection. Among several means to achieve IPC, we reported that remote ischemic preconditioning (RIPC) activates the non-neuronal cardiac cholinergic system (NNCCS) to accelerate de novo ACh synthesis in cardiomyocytes. In the current study, we aimed to optimize a specific protocol to most efficiently activate NNCCS using RIPC. In this study, we elucidated that the protocol with 3 min of ischemia repeated three times increased cardiac ChAT expression (139.2 ± 0.4%; P < 0.05) as well as ACh (14.2 ± 2.0× 10(-8) M; P< 0.05) and ATP content (2.13 ± 0.19 µmol/g tissue; P < 0.05) in the heart. Moreover, in the specific protocol, several characteristic responses against energy starvation and for obtaining adequate energy were observed; therefore, it is suggested that RIPC evokes a robust response by the heart to activate NNCCS through the modification of energy metabolism.


Assuntos
Acetilcolina/metabolismo , Trifosfato de Adenosina/metabolismo , Precondicionamento Isquêmico , Miocárdio/metabolismo , Animais , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Regulação da Expressão Gênica , Membro Posterior , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Int Immunopharmacol ; 29(1): 31-5, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25979761

RESUMO

We previously reported that satellite cells possess the ability to produce angiogenic factors, including fibroblast growth factor (FGF)-2 and vascular endothelial growth factor (VEGF) in vivo. However, whether C2C12 cells possess a non-neuronal cholinergic system (NNCS) or non-neuronal ACh (NNA) remains to be studied; therefore, we investigated the system using C2C12 cells and its regulatory mechanisms. C2C12 cells synthesized ACh, the level of which was comparable with that of cardiomyocytes, and the synthesis was augmented by the acetylcholinesterase inhibitor galantamine. The ChAT promoter activity was upregulated by nicotine or galantamine, partly through nicotinic receptors for both agents as well as through a non-nicotinic receptor pathway for galantamine. Further, VEGF secretion by C2C12 cells was also increased by nicotine or galantamine through nicotinic receptors as well as partly through non-nicotinic pathways in the case of galantamine. These results suggest that C2C12 cells are equipped with NNCS or NNA, which is positively regulated through nicotinic or non-nicotinic pathways, particularly in the case of galantamine. These results provide a novel concept that myogenic cells expressing NNA can be a therapeutic target for regulating angiogenic factor synthesis.


Assuntos
Acetilcolina/metabolismo , Inibidores da Colinesterase/farmacologia , Galantamina/farmacologia , Receptores Nicotínicos/metabolismo , Animais , Linhagem Celular , Camundongos , Nicotina/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Cell Physiol Biochem ; 34(3): 781-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170772

RESUMO

BACKGROUND/AIMS: We previously suggested that a non-neuronal cholinergic system modulates energy metabolism through the mitochondria. However, the mechanisms responsible for making this system crucial remained undetermined. METHODS: In this study, we developed a fusion protein expression vector containing a luciferase gene fused to the folic acid receptor-α gene. RESULTS: This protein of the vector was confirmed to target the plasma membrane of transfected HEK293 cells, and vector-derived luciferase activities and ATP levels in viable cells were positively correlated (r = 0.599). Using this luciferase vector, choline acetyltransferase (ChAT)-expressing cells (i.e., cells with an activated non-neuronal cholinergic system) had increased cellular ATP levels. ChAT-expressing cells also had upregulated IGF-1R and Glut-1 protein expressions as well as increased glucose uptake. This activated non-neuronal cholinergic system with efficient glucose metabolism rendered cells resistant to serum depletion-induced cell death. CONCLUSION: Our results indicate that a non-neuronal cholinergic system is involved in sustaining ATP levels to render cells resistant to a nutrient-deficient environment.


Assuntos
Trifosfato de Adenosina/metabolismo , Receptores Colinérgicos/metabolismo , Sobrevivência Celular , Colina O-Acetiltransferase/metabolismo , Meios de Cultura , Meios de Cultura Livres de Soro , Células HEK293 , Humanos
11.
Transl Res ; 164(1): 32-45, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24811002

RESUMO

We have recently identified that donepezil, an anti-Alzheimer drug, accelerates angiogenesis in a murine hindlimb ischemia (HLI) model. However, the precise mechanisms are yet to be fully elucidated, particularly whether the effects are derived from endothelial cells alone or from other nonvascular cells. Further investigation of the HLI model revealed that nicotine accelerated angiogenesis by activation of vascular endothelial cell growth factor (VEGF) synthesis through nicotinic receptors in myogenic cells, that is, satellite cells, in vivo and upregulated the expression of angiogenic factors, for example, VEGF and fibroblast growth factor 2, in vitro. As a result, nicotine prevented skeletal muscle from ischemia-induced muscle atrophy and upregulated myosin heavy chain expression in vitro. The in vivo anti-atrophy effect of nicotine on muscle was also observed in galantamine, another anti-Alzheimer drug, playing as an allosteric potentiating ligand. Such effects of nicotine were attenuated in α7 nicotinic receptor knockout mice. In contrast, PNU282987, an α7 nicotinic receptor agonist, comparably salvaged skeletal muscle, which was affected by HLI. These results suggest that cholinergic signals also target myogenic cells and have inhibiting roles in muscle loss by ischemia-induced muscle atrophy.


Assuntos
Isquemia/metabolismo , Atrofia Muscular/prevenção & controle , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Membro Posterior/irrigação sanguínea , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/irrigação sanguínea , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA