Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (185)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35938823

RESUMO

Matrix stiffening has been recognized as one of the key drivers of the progression of liver fibrosis. It has profound effects on various aspects of cell behavior such as cell function, differentiation, and motility. However, as these processes are not homogeneous throughout the whole organ, it has become increasingly important to understand changes in the mechanical properties of tissues on the cellular level. To be able to monitor the stiffening of collagen-rich areas within the liver lobes, this paper presents a protocol for measuring liver tissue elastic moduli with high spatial precision by atomic force microscopy (AFM). AFM is a sensitive method with the potential to characterize local mechanical properties, calculated as Young's (also referred to as elastic) modulus. AFM coupled with polarization microscopy can be used to specifically locate the areas of fibrosis development based on the birefringence of collagen fibers in tissues. Using the presented protocol, we characterized the stiffness of collagen-rich areas from fibrotic mouse livers and corresponding areas in the livers of control mice. A prominent increase in the stiffness of collagen-positive areas was observed with fibrosis development. The presented protocol allows for a highly reproducible method of AFM measurement, due to the use of mildly fixed liver tissue, that can be used to further the understanding of disease-initiated changes in local tissue mechanical properties and their effect on the fate of neighboring cells.


Assuntos
Colágeno , Fígado , Animais , Módulo de Elasticidade/fisiologia , Fibrose , Camundongos , Microscopia de Força Atômica/métodos , Microscopia de Polarização
2.
J Cell Biol ; 218(11): 3697-3713, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31604801

RESUMO

Triglyceride-rich lipid droplets (LDs) are catabolized with high efficiency in hepatocytes to supply fatty acids for producing lipoprotein particles. Fasting causes a massive influx of adipose-derived fatty acids into the liver. The liver in the fasted state is therefore bloated with LDs but, remarkably, still continues to secrete triglycerides at a constant rate. Here we show that insulin signaling elevates phosphatidic acid (PA) dramatically on LDs in the fed state. PA then signals to recruit kinesin-1 motors, which transport LDs to the peripherally located smooth ER inside hepatocytes, where LDs are catabolized to produce lipoproteins. This pathway is down-regulated homeostatically when fasting causes insulin levels to drop, thus preventing dangerous elevation of triglycerides in the blood. Further, we show that a specific peptide against kinesin-1 blocks triglyceride secretion without any apparent deleterious effects on cells. Our work therefore reveals fundamental mechanisms that maintain lipid homeostasis across metabolic states and leverages this knowledge to propose a molecular target against hyperlipidemia.


Assuntos
Insulina/metabolismo , Gotículas Lipídicas/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Fígado/citologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA