Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18829, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914726

RESUMO

Enamel forming ameloblasts move away from the dentino-enamel junction and also move relative to each other to establish enamel shape during the secretory stage of enamel development. Matrix metalloproteinase-20 (MMP20) is a tooth specific proteinase essential for proper enamel formation. We previously reported that MMP20 cleaves cadherins and may regulate ameloblast movement. Here, we used an Amelx promoter driven tdTomato reporter to label mouse ameloblasts. With these transgenic mice, we assessed ameloblast mobility group dynamics and gene expression. Three-dimensional imaging of mouse ameloblasts were observed in hemi-mandibles by using a tissue clearing technique. The three-dimensional ameloblast layer in Tg(Amelx-Mmp20) mice that overexpress MMP20 was uneven and the ameloblasts migrated away from this layer. Mouse ameloblast movement toward incisal tips was monitored by ex vivo time-lapse imaging. Gene expression related to cell migration and adhesion was analyzed in ameloblasts from wild-type mice, Mmp20-/- mice with no functional MMP20 and from Tg(Amelx-Mmp20) overexpressing mice. Gene expression was altered in Mmp20-/- and Tg(Amelx-Mmp20) mice compared to wild type. Among the genes assessed, those encoding laminins and a gap junction protein were upregulated in Mmp20-/- mice. New techniques and findings described in this study may lead to an improved understanding of ameloblast movement during enamel formation.


Assuntos
Ameloblastos , Metaloproteinase 20 da Matriz , Camundongos , Animais , Ameloblastos/metabolismo , Metaloproteinase 20 da Matriz/metabolismo , Camundongos Transgênicos , Caderinas/metabolismo , Expressão Gênica
2.
Eur J Oral Sci ; 131(2): e12920, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36794562

RESUMO

Transient receptor potential melastatin 7 (TRPM7) is a unique ion channel connected to a kinase domain. We previously demonstrated that Trpm7 expression is high in mouse ameloblasts and odontoblasts, and that amelogenesis is impaired in TRPM7 kinase-dead mice. Here, we analyzed TRPM7 function during amelogenesis in Keratin 14-Cre;Trpm7fl/fl conditional knockout (cKO) mice and Trpm7 knockdown cell lines. cKO mice showed lesser tooth pigmentation than control mice and broken incisor tips. Enamel calcification and microhardness were lower in cKO mice. Electron probe microanalysis (EPMA) showed that the calcium and phosphorus contents in the enamel were lower in cKO mouse than in control mice. The ameloblast layer in cKO mice showed ameloblast dysplasia at the maturation stage. The morphological defects were observed in rat SF2 cells with Trpm7 knockdown. Compared with mock transfectants, the Trpm7 knockdown cell lines showed lower levels of calcification with Alizarin Red-positive staining and an impaired intercellular adhesion structures. These findings suggest that TRPM7 is a critical ion channel in enamel calcification for the effective morphogenesis of ameloblasts during amelogenesis.


Assuntos
Canais de Cátion TRPM , Camundongos , Ratos , Animais , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Camundongos Knockout , Esmalte Dentário/metabolismo , Ameloblastos/metabolismo , Epitélio , Amelogênese/genética , Proteínas de Transporte/metabolismo , Incisivo
3.
Bone ; 166: 116579, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36210025

RESUMO

Transient receptor potential melastatin-subfamily member 7 (TRPM7) is a bifunctional protein containing a kinase fused to an ion channel permeated with cations, including Ca2+ and Mg2+. Trpm7-null mice show embryonic lethality. Paired related homeobox 1 (Prx1) is expressed in undifferentiated mesenchymal cells such as the progenitor cells of both chondrocytes and osteoblasts involved in limb skeleton formation. Prx1-Cre-dependent Trpm7 mesenchymal-deleted mice were generated to examine the role of TRPM7 in bone development. We found that Prx1-Cre;Trpm7fl/fl mice had shortened bones and impaired trabecular bone formation. Trabecular bone parameters, such as the bone volume (BV/TV), and trabecular number (Tb.N), were decreased in Prx1-Cre;Trpm7fl/fl mice. The cortical bone parameters of cortical bone area (Ct.Ar) and cortical bone thickness (Ct.Th) were also down-regulated in these mice. The bone formation rate in Prx1-Cre;Trpm7fl/fl mice was unchanged, but the hypertrophic area and cell size of the zone were smaller, and the expression of Col2a1, Col10a1 and Mmp13 was downregulated compared with control mice. These findings suggest impaired chondrogenesis in Prx1-Cre;Trpm7fl/fl mice compared to control mice. The receptor activator of nuclear factor-kappa B ligand (RANKL) expression was increased, and RANKL-positive cells and osteoclasts were markedly accumulated in the boundary region between the growth plate and trabecular bone. In contrast, TRPM7 KR mice, which are kinase-dead mutants in which the TRPM7 ion channel function has not been altered, showed no marked differences in trabecular or cortical bone parameters compared to wild-type mice. These findings suggest that TRPM7 is critical as a cation channel rather than as a kinase in bone development via the regulation of chondrogenesis.


Assuntos
Células-Tronco Mesenquimais , Canais de Cátion TRPM , Camundongos , Animais , Osteogênese , Condrogênese , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Células-Tronco Mesenquimais/metabolismo , Lâmina de Crescimento/metabolismo
4.
Bone ; 154: 116210, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592494

RESUMO

Amelogenesis consists of secretory, transition, maturation, and post-maturation stages, and the morphological changes of ameloblasts at each stage are closely related to their function. p130 Crk-associated substrate (Cas) is a scaffold protein that modulates essential cellular processes, including cell adhesion, cytoskeletal changes, and polarization. The expression of p130Cas was observed from the secretory stage to the maturation stage in ameloblasts. Epithelial cell-specific p130Cas-deficient (p130CasΔepi-) mice exhibited enamel hypomineralization with chalk-like white mandibular incisors in young mice and attrition in aged mouse molars. A micro-computed tomography analysis and Vickers micro-hardness testing showed thinner enamel, lower enamel mineral density and hardness in p130CasΔepi- mice in comparison to p130Casflox/flox mice. Scanning electron microscopy, and an energy dispersive X-ray spectroscopy analysis indicated the disturbance of the enamel rod structure and lower Ca and P contents in p130CasΔepi- mice, respectively. The disorganized arrangement of ameloblasts, especially in the maturation stage, was observed in p130CasΔepi- mice. Furthermore, expression levels of enamel matrix proteins, such as amelogenin and ameloblastin in the secretory stage, and functional markers, such as alkaline phosphatase and iron accumulation, and Na+/Ca2++K+-exchanger in the maturation stage were reduced in p130CasΔepi- mice. These findings suggest that p130Cas plays important roles in amelogenesis (197 words).


Assuntos
Amelogênese , Proteína Substrato Associada a Crk/metabolismo , Proteínas do Esmalte Dentário , Ameloblastos/metabolismo , Animais , Proteínas do Esmalte Dentário/metabolismo , Células Epiteliais/metabolismo , Camundongos , Microtomografia por Raio-X
5.
Lab Invest ; 101(11): 1475-1483, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34504305

RESUMO

Oral malignant melanoma, which frequently invades the hard palate or maxillary bone, is extremely rare and has a poor prognosis. Bone morphogenetic protein (BMP) is abundantly expressed in bone matrix and is highly expressed in malignant melanoma, inducing an aggressive phenotype. We examined the role of BMP signaling in the acquisition of an aggressive phenotype in melanoma cells in vitro and in vivo. In five cases, immunohistochemistry indicated the phosphorylation of Smad1/5 (p-Smad1/5) in the nuclei of melanoma cells. In the B16 mouse and A2058 human melanoma cell lines, BMP2, BMP4, or BMP7 induces morphological changes accompanied by the downregulation of E-cadherin, and the upregulation of N-cadherin and Snail, markers of epithelial-mesenchymal transition (EMT). BMP2 also stimulates cell invasion by increasing matrix metalloproteinase activity in B16 cells. These effects were canceled by the addition of LDN193189, a specific inhibitor of Smad1/5 signaling. In vivo, the injection of B16 cells expressing constitutively activated ALK3 enhanced zygoma destruction in comparison to empty B16 cells by increasing osteoclast numbers. These results suggest that the activation of BMP signaling induces EMT, thus driving the acquisition of an aggressive phenotype in malignant melanoma.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Ósseas/secundário , Melanoma/secundário , Neoplasias Bucais/patologia , Proteínas Smad Reguladas por Receptor/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Osso e Ossos/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Humanos , Masculino , Melanoma/metabolismo , Camundongos , Neoplasias Bucais/metabolismo , Invasividade Neoplásica , Transdução de Sinais
6.
Bone ; 150: 116010, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34020080

RESUMO

Severe dental tissue damage induces odontoblast death, after which dental pulp stem and progenitor cells (DPSCs) differentiate into odontoblast-like cells, contributing to reparative dentin. However, the damage-induced mechanism that triggers this regeneration process is still not clear. We aimed to understand the effect of odontoblast death without hard tissue damage on dental regeneration. Herein, using a Cre/LoxP-based strategy, we demonstrated that cell-rich zone (CZ)-localizing Nestin-GFP-positive and Nestin-GFP-negative cells proliferate and differentiate into odontoblast-like cells in response to odontoblast depletion. The regenerated odontoblast-like cells played a role in reparative dentin formation. RNA-sequencing analysis revealed that the expression of odontoblast differentiation- and activation-related genes was upregulated in the pulp in response to odontoblast depletion even without damage to dental tissue. In this regenerative process, the expression of type I parathyroid hormone receptor (PTH1R) increased in the odontoblast-depleted pulp, thereby boosting dentin formation. The levels of PTH1R and its downstream mediator, i.e., phosphorylated cyclic AMP response element-binding protein (Ser133) increased in the physically damaged pulp. Collectively, odontoblast death triggered the PTH1R cascade, which may represent a therapeutic target for inducing CZ-mediated dental regeneration.


Assuntos
Dentina , Odontoblastos , Diferenciação Celular , Polpa Dentária , Células-Tronco , Cicatrização
7.
Int J Mol Sci ; 22(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375370

RESUMO

Calcium (Ca2+) plays an important role in regulating the differentiation and function of osteoclasts. Calcium oscillations (Ca oscillations) are well-known phenomena in receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption via calcineurin. Many modifiers are involved in the fine-tuning of Ca oscillations in osteoclasts. In addition to macrophage colony-stimulating factors (M-CSF; CSF-1) and RANKL, costimulatory signaling by immunoreceptor tyrosine-based activation motif-harboring adaptors is important for Ca oscillation generation and osteoclast differentiation. DNAX-activating protein of 12 kD is always necessary for osteoclastogenesis. In contrast, Fc receptor gamma (FcRγ) works as a key controller of osteoclastogenesis especially in inflammatory situation. FcRγ has a cofactor in fine-tuning of Ca oscillations. Some calcium channels and transporters are also necessary for Ca oscillations. Transient receptor potential (TRP) channels are well-known environmental sensors, and TRP vanilloid channels play an important role in osteoclastogenesis. Lysosomes, mitochondria, and endoplasmic reticulum (ER) are typical organelles for intracellular Ca2+ storage. Ryanodine receptor, inositol trisphosphate receptor, and sarco/endoplasmic reticulum Ca2+ ATPase on the ER modulate Ca oscillations. Research on Ca oscillations in osteoclasts has still many problems. Surprisingly, there is no objective definition of Ca oscillations. Causality between Ca oscillations and osteoclast differentiation and/or function remains to be examined.


Assuntos
Reabsorção Óssea/patologia , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Diferenciação Celular , Osteoclastos/citologia , Osteogênese , Animais , Reabsorção Óssea/metabolismo , Humanos , Osteoclastos/metabolismo
8.
Cancer Sci ; 111(4): 1113-1123, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32012401

RESUMO

Programmed cell death ligands (PD-Ls) are expressed in tumor cells where they bind to programmed cell death-1, an immunocyte co-receptor, resulting in tumor cell evasion from the immune system. Chemotherapeutic drugs have been recently reported to induce the expression of PD-L, such as PD-L1, in some cancer cells. However, little is known regarding PD-L2 expression and its role in oral squamous cell carcinoma (OSCC). In this study, we examined the effect of cisplatin on the expression and regulation of PD-L2 in OSCC cell lines and analyzed malignant behavior in PD-L2-expressing cells using colony, transwell and transformation assays. In addition, we examined PD-L2 expression in the tumor tissues of OSCC patients using cytology and tissue microarray methods. In OSCC cell lines, cisplatin treatment upregulated PD-L2 expression, along with that of the drug efflux transporter ABCG2, via signal transducers and activator of transcription (STAT) 1/3 activation. Moreover, PD-L2-positive or PD-L2-overexpressing cells demonstrated upregulation in both invasion and transformation ability but not in proliferation compared with PD-L2-negative or PD-L2-silencing cells. PD-L2 expression was also observed in OSCC cells of cytology samples and tissue from OSCC patients. The intensity of PD-L2 expression was correlated with more malignant morphological features in the histological appearance and an invasive pattern. Our findings indicate that cisplatin-upregulated PD-L2 expression in OSCC via STAT1/3 activation and the expression of PD-L2 are likely to be associated with malignancy in OSCC. The PD-L2 expression in cisplatin-resistant OSCC cells may be a critical factor in prognosis of advanced OSCC patients.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Proteína 2 Ligante de Morte Celular Programada 1/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT3/genética , Análise Serial de Tecidos
9.
J Bone Miner Res ; 34(9): 1744-1752, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31067348

RESUMO

CTLA4-Ig (cytotoxic T-lymphocyte antigen 4-immunoglobulin; Abatacept) is a biologic drug for rheumatoid arthritis. CTLA4 binds to the CD80/86 complex of antigen-presenting cells and blocks the activation of T cells. Although previous reports showed that CTLA4-Ig directly inhibited osteoclast differentiation, the whole inhibitory mechanism of CTLA4-Ig for osteoclast differentiation is unclear. Bone marrow macrophages (BMMs) from WT mice were cultured with M-CSF and RANKL with or without the recombinant mouse chimera CTLA4-Ig. Intracellular calcium oscillations of BMMs with RANKL were detected by staining with calcium indicator fura-2 immediately after administration of CTLA4-Ig or after one day of treatment. Calcium oscillations were analyzed using Fc receptor gamma- (FcRγ-) deficient BMMs. CTLA4-Ig inhibited osteoclast differentiation and reduced the expression of the nuclear factor of activated T cells NFATc1 in BMMs in vitro. Calcium oscillations in BMMs were suppressed by CTLA4-Ig both immediately after administration and after one day of treatment. CTLA4-Ig did not affect osteoclastogenesis and did not cause remarkable changes in calcium oscillations in FcRγ-deficient BMMs. Finally, to analyze the effect of CTLA4-Ig in vivo, we used an LPS-induced osteolysis model. CTLA4-Ig suppressed LPS-induced bone resorption in WT mice, not in FcRγ-deficient mice. In conclusion, CTLA4-Ig inhibits intracellular calcium oscillations depending on FcRγ and downregulates NFATc1 expression in BMMs. © 2019 American Society for Bone and Mineral Research.


Assuntos
Abatacepte/farmacologia , Medula Óssea/patologia , Sinalização do Cálcio/efeitos dos fármacos , Espaço Intracelular/metabolismo , Macrófagos/metabolismo , Osteogênese/efeitos dos fármacos , Abatacepte/administração & dosagem , Animais , Feminino , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fatores de Transcrição NFATC/metabolismo , Osteólise/metabolismo , Osteólise/patologia , Receptores de IgG/metabolismo , Crânio/patologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
10.
J Biomed Mater Res B Appl Biomater ; 107(1): 122-128, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29521019

RESUMO

Scaffolds implanted into bone defect sites must achieve optimal biodegradation rates while appropriately filling the void as new bone formation progresses. We recently developed a unique biomaterial consisting of salmon deoxyribose nucleic acid (DNA) and protamine, which can be used as an osteoconductive scaffold for tissue engineering. The aim of the present study was to elucidate how the degradation rate of the scaffold affects bone regeneration. We examined the relationships between the degradation rate of salmon DNA scaffolds and new bone formation using a rat skin flank subcutaneous model and rat calvarial defect model. The degradation rates of the scaffolds were proportional to the durations of pretreatment with ultraviolet (UV) light irradiation. The biodegradation rates of the scaffolds were also dependent on the duration of UV irradiation, as tested a subcutaneous tissue implantation. Scaffolds irradiated with UV light for 0.5 h maintained gradual biodegradation of phosphate compared with scaffolds irradiated for 0 or 3 h. In the calvarial defect model, we found that new bone formation was higher in rats treated with scaffolds irradiated with UV light for 0.5 h compared with those irradiated with UV light for 0 or 3.0 h. The present results suggest that bioengineering of scaffolds for biodegradation is important to regenerate bone. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 122-128, 2019.


Assuntos
Implantes Absorvíveis , Regeneração Óssea , DNA/química , Crânio , Alicerces Teciduais/química , Animais , Masculino , Protaminas/química , Ratos , Ratos Sprague-Dawley , Salmão , Crânio/lesões , Crânio/metabolismo , Crânio/patologia , Raios Ultravioleta
12.
Lipids Health Dis ; 17(1): 132, 2018 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-29859535

RESUMO

BACKGROUND: Lectin-like oxidized low-density-lipoprotein receptor 1 (Lox-1) is the receptor for oxidized low-density lipoprotein (oxLDL), a mediator in dyslipidemia. Toll-like receptor (TLR)-2 and - 4 are receptors of lipopolysaccharide (LPS) from Porphyromonas gingivalis, a major pathogen of chronic periodontitis. Although some reports have demonstrated that periodontitis has an adverse effect on dyslipidemia, little is clear that the mechanism is explained the effects of dyslipidemia on osteoclastogenesis. We have hypothesized that osteoclast oxLDL has directly effect on osteoclasts (OCs), and therefore alveolar bone loss on periodontitis may be increased by dyslipidemia. The present study aimed to elucidate the effect of Lox-1 on osteoclastogenesis associated with TLRs in vitro. METHODS: Mouse bone marrow cells (BMCs) were stimulated with macrophage colony-stimulating factor into bone marrow macrophages (BMMs). The cells were also stimulated with synthetic ligands for TLR2 (Pam3CSK4) or TLR4 (Lipid A), with or without receptor activator of nuclear factor kappa-B ligand (RANKL), and assessed for osteoclastogenesis by tartrate-resistant acid phosphatase (TRAP) staining, immunostaining, western blotting, flow activated cell sorting (FACS) analysis, real-time polymerase chain reaction (PCR), and reverse transcription PCR. RESULTS: Lox-1 expression was significantly upregulated by Pam3CSK4 and Lipid A in BMCs (p < 0.05), but not in BMMs. FACS analysis identified that Pam3CSK4 upregulated RANK and Lox-1 expression in BMCs. TRAP-positive cells were not increased by stimulation with Pam3CSK4 alone, but were increased by stimulation with combination combined Pam3CSK and oxLDL. Expression of both Lox-1 and myeloid differentiation factor 88 (MyD88), an essential adaptor protein in the TLR signaling pathway, were suppressed by inhibitors of TLR2, TLR4 and mitogen-activated protein kinase (MAPK). CONCLUSIONS: This study supports that osteoclastogenesis is promoted under the coexistence of oxLDL by TLR2-induced upregulation of Lox-1 in BMCs. This indicates that periodontitis could worsen with progression of dyslipidemia.


Assuntos
Células da Medula Óssea/metabolismo , Osteogênese , Receptores Depuradores Classe E/fisiologia , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Animais , Células da Medula Óssea/fisiologia , Diferenciação Celular , Lipoproteínas LDL , Macrófagos , Masculino , Camundongos , Periodontite , Receptores Depuradores Classe E/metabolismo
13.
Cell Mol Life Sci ; 75(1): 33-48, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28791425

RESUMO

Rab44 is an atypical Rab GTPase that contains some additional domains such as the EF-hand and coiled-coil domains as well as Rab-GTPase domain. Although Rab44 genes have been found in mammalian genomes, no studies concerning Rab44 have been reported yet. Here, we identified Rab44 as an upregulated protein during osteoclast differentiation. Knockdown of Rab44 by small interfering RNA promotes RANKL-induced osteoclast differentiation of the murine monocytic cell line, RAW-D or of bone marrow-derived macrophages (BMMs). In contrast, overexpression of Rab44 prevents osteoclast differentiation. Rab44 was localized in the Golgi complex and lysosomes, and Rab44 overexpression caused an enlargement of early endosomes. A series of deletion mutant studies of Rab44 showed that the coiled-coil domain and lipidation sites of Rab44 is important for regulation of osteoclast differentiation. Mechanistically, Rab44 affects nuclear factor of activated T-cells c1 (NFATc1) signaling in RANKL-stimulated macrophages. Moreover, Rab44 depletion caused an elevation in intracellular Ca2+ transients upon RANKL stimulation, and particularly regulated lysosomal Ca2+ influx. Taken together, these results suggest that Rab44 negatively regulates osteoclast differentiation by modulating intracellular Ca2+ levels followed by NFATc1 activation.


Assuntos
Cálcio/metabolismo , Diferenciação Celular , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Complexo de Golgi/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Lisossomos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Osteoclastos/citologia , Ligante RANK/farmacologia , Células RAW 264.7 , Interferência de RNA , Proteínas rab de Ligação ao GTP/genética
14.
J Prosthodont Res ; 62(3): 298-302, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29241945

RESUMO

PURPOSE: Occlusal trauma, resulting in the destruction of alveolar bone, is a form of periodontal disease caused by excessive mechanical stress (MS) during hyperocclusion. Previously, we showed that CC chemokine ligand (CCL) 2/CCR2 receptor axis plays a crucial role in MS-dependent osteoclastogenesis. However, in the previous work, we were unable to precisely measure changes in alveolar bone profiles. In the present study, we sought to establish a precise method for evaluating alveolar bone resorption induced by hyperocclusion using micro-computed tomography. METHODS: Under anesthesia, a stainless steel wire was attached to the molars of 5-week-old C57/BL6 wild-type (WT) mice, CCL2-/- mice, and CCR2-/-mice to induce occlusal force overload. At days 0 and 7, hard tissue samples were harvested and analyzed by micro-computed tomography. RESULTS: In the WT mice, bone mineral density of the alveolar bone was significantly decreased at day 7 as compared with day 0, with marked alveolar bone resorption observed. Similarly, significant alveolar bone resorption was observed in the CCL2-/- and CCR2-/- mice at day 7 as compared with day 0. CONCLUSIONS: Micro-computed tomographic images can be used to measure changes in bone mineral density in a mouse model of hyperocclusion. This method may be useful for further investigating bone changes in other periodontal disease research fields.


Assuntos
Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/etiologia , Força de Mordida , Oclusão Dentária Traumática/complicações , Estresse Mecânico , Perda do Osso Alveolar/metabolismo , Animais , Densidade Óssea , Oclusão Dentária Traumática/metabolismo , Oclusão Dentária Traumática/fisiopatologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Alvéolo Dental/metabolismo , Microtomografia por Raio-X
15.
Sci Rep ; 7(1): 18099, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273814

RESUMO

Transient receptor potential melastatin-7 (TRPM7) is a bi-functional protein containing a kinase domain fused to an ion channel. TRPM7 is highly expressed in ameloblasts during tooth development. Here we show that TRPM7 kinase-inactive knock-in mutant mice (TRPM7 KR mice) exhibited small enamel volume with opaque white-colored incisors. The TRPM7 channel function of ameloblast-lineage cells from TRPM7 KR mice was normal. Interestingly, phosphorylation of intracellular molecules including Smad1/5/9, p38 and cAMP response element binding protein (CREB) was inhibited in ameloblasts from TRPM7 KR mice at the pre-secretory stage. An immunoprecipitation assay showed that CREB was bound to TRPM7, suggesting that direct phosphorylation of CREB by TRPM7 was inhibited in ameloblast-lineage cells from TRPM7 KR mice. These results indicate that the function of the TRPM7 kinase domain plays an important role in ameloblast differentiation, independent of TRPM7 channel activity, via phosphorylation of CREB.


Assuntos
Ameloblastos/metabolismo , Amelogênese/fisiologia , Diferenciação Celular/fisiologia , Canais de Cátion TRPM/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Epiteliais/metabolismo , Camundongos , Camundongos Transgênicos , Odontoblastos/metabolismo , Fosforilação , Canais de Cátion TRPM/genética
16.
Mol Cell ; 68(4): 645-658.e5, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149593

RESUMO

Hajdu-Cheney syndrome (HCS), a rare autosomal disorder caused by heterozygous mutations in NOTCH2, is clinically characterized by acro-osteolysis, severe osteoporosis, short stature, neurological symptoms, cardiovascular defects, and polycystic kidneys. Recent studies identified that aberrant NOTCH2 signaling and consequent osteoclast hyperactivity are closely associated with the bone-related disorder pathogenesis, but the exact molecular mechanisms remain unclear. Here, we demonstrate that sustained osteoclast activity is largely due to accumulation of NOTCH2 carrying a truncated C terminus that escapes FBW7-mediated ubiquitination and degradation. Mice with osteoclast-specific Fbw7 ablation revealed osteoporotic phenotypes reminiscent of HCS, due to elevated Notch2 signaling. Importantly, administration of Notch inhibitors in Fbw7 conditional knockout mice alleviated progressive bone resorption. These findings highlight the molecular basis of HCS pathogenesis and provide clinical insights into potential targeted therapeutic strategies for skeletal disorders associated with the aberrant FBW7/NOTCH2 pathway as observed in patients with HCS.


Assuntos
Proteína 7 com Repetições F-Box-WD , Síndrome de Hajdu-Cheney , Mutação , Osteoporose , Proteólise , Receptor Notch2 , Animais , Linhagem Celular , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Síndrome de Hajdu-Cheney/genética , Síndrome de Hajdu-Cheney/metabolismo , Camundongos Knockout , Osteoporose/genética , Osteoporose/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Ubiquitinação/genética
17.
Sci Signal ; 10(460)2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049764

RESUMO

The SCFß-TRCP E3 ubiquitin ligase complex plays pivotal roles in normal cellular physiology and in pathophysiological conditions. Identification of ß-transducin repeat-containing protein (ß-TRCP) substrates is therefore critical to understand SCFß-TRCP biology and function. We used a ß-TRCP-phosphodegron motif-specific antibody in a ß-TRCP substrate screen coupled with tandem mass spectrometry and identified multiple ß-TRCP substrates. One of these substrates was Lipin1, an enzyme and suppressor of the family of sterol regulatory element-binding protein (SREBP) transcription factors, which activate genes encoding lipogenic factors. We showed that SCFß-TRCP specifically interacted with and promoted the polyubiquitination of Lipin1 in a manner that required phosphorylation of Lipin1 by mechanistic target of rapamycin 1 (mTORC1) and casein kinase I (CKI). ß-TRCP depletion in HepG2 hepatocellular carcinoma cells resulted in increased Lipin1 protein abundance, suppression of SREBP-dependent gene expression, and attenuation of triglyceride synthesis. Moreover, ß-TRCP1 knockout mice showed increased Lipin1 protein abundance and were protected from hepatic steatosis induced by a high-fat diet. Together, these data reveal a critical physiological function of ß-TRCP in regulating hepatic lipid metabolic homeostasis in part through modulating Lipin1 stability.


Assuntos
Lipogênese , Fígado/metabolismo , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatase/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Immunoblotting , Camundongos , Camundongos Knockout , Células NIH 3T3 , Proteínas Nucleares/genética , Fosfatidato Fosfatase/genética , Fosforilação , Ligação Proteica , Proteólise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ligases SKP Culina F-Box/genética , Especificidade por Substrato , Ubiquitinação
18.
Oncotarget ; 8(6): 9947-9960, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28039480

RESUMO

Folliculin-interacting protein 1 and 2 (FNIP1 and FNIP2) play critical roles in preventing renal malignancy through their association with the tumor suppressor FLCN. Mutations in FLCN are associated with Birt-Hogg-Dubé (BHD) syndrome, a rare disorder with increased risk of renal cancer. Recent studies indicated that FNIP1/FNIP2 double knockout mice display enlarged polycystic kidneys and renal carcinoma, which phenocopies FLCN knockout mice, suggesting that these two proteins function together to suppress renal cancer. However, the molecular mechanism functionally linking FNIP1/FNIP2 and FLCN remains largely elusive. Here, we demonstrated that FNIP2 protein is unstable and subjected to proteasome-dependent degradation via ß-TRCP and Casein Kinase 1 (CK1)-directed ubiquitination in a nutrition-dependent manner. Degradation of FNIP2 leads to lysosomal dissociation of FLCN and subsequent lysosomal association of mTOR, which in turn promotes the proliferation of renal cancer cells. These results indicate that SCFß-TRCP negatively regulates the FLCN complex by promoting FNIP degradation and provide molecular insight into the pathogenesis of BHD-associated renal cancer.


Assuntos
Síndrome de Birt-Hogg-Dubé/enzimologia , Carcinoma de Células Renais/enzimologia , Proteínas de Transporte/metabolismo , Proliferação de Células , Neoplasias Renais/enzimologia , Estado Nutricional , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Síndrome de Birt-Hogg-Dubé/genética , Síndrome de Birt-Hogg-Dubé/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proteínas de Transporte/genética , Caseína Quinase I/metabolismo , Metabolismo Energético , Células HEK293 , Células HeLa , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Lisossomos/metabolismo , Camundongos Nus , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , Proteínas Ligases SKP Culina F-Box/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral , Proteínas Supressoras de Tumor/genética , Ubiquitinação
19.
Arch Oral Biol ; 66: 86-91, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26930474

RESUMO

OBJECTIVES: It is known that excessive mechanical force exerted by hyperocclusion induces occlusal trauma. However, the mechanism of the process remains unclear. In the present study, we employed an in vivo hyperocclusion rodent model to examine morphological and biological mechanisms of occlusal trauma in periodontal ligament tissue. DESIGN: To investigate alveolar bone resorption, tooth sections were stained to detect osteoclasts. To investigate the relationship between hyperocclusion and the regeneration of the cell matrix, we examined the effect of hyperocclusal force on the expression of collagens using immunohistochemistry and quantitative PCR methods. RESULTS: The arrangement of collagen fibers in the furcation area of the teeth was undisturbed before hyperocclusion (control). Type I collagen was localized in the extracellular area at the furcation and there was faint expression and localization of type XII collagen in the periodontal ligament. The number of osteoclasts significantly increased in the furcation and lingual cervical regions on day 4 after hyperocclusion was induced. Type XII collagens were gradually up-regulated following the induction of hyperocclusion, in a time-dependent manner. Although type I collagen mRNA expression was stable before and after hyperocclusion, type XII collagen mRNA was significantly up-regulated on day 2 and day 4 after hyperocclusion treatment. CONCLUSIONS: Our findings indicate that hyperocclusal force predominantly up-regulates the expression of type XII collagen in periodontal tissue, but not type I collagen, suggesting that there is a mechanism for regeneration of periodontal tissues as a response to occlusal trauma.


Assuntos
Colágeno Tipo XII/biossíntese , Oclusão Dentária , Ligamento Periodontal/metabolismo , Perda do Osso Alveolar/patologia , Animais , Fenômenos Biomecânicos , Força de Mordida , Colágeno/biossíntese , Colágeno Tipo I/metabolismo , Colágenos Associados a Fibrilas/biossíntese , Colágenos Fibrilares/biossíntese , Camundongos , Osteoclastos/metabolismo , Ligamento Periodontal/citologia , Ratos , Ratos Wistar , Regulação para Cima
20.
Biochem Biophys Res Commun ; 468(4): 622-8, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26551467

RESUMO

We previously reported the promotion of bone regeneration in calvarial defects of both normal and ovariectomy-induced osteoporotic rats, with the use of biodegradable DNA/protamine scaffold. However, the method by which this DNA-containing scaffold promotes bone formation is still not understood. We hypothesize that the salmon DNA, from which this scaffold is derived, has an osteoinductive effect on pre-osteoblasts and osteoblasts. We examined the effects of salmon DNA on osteoblastic differentiation and calcification in MC3T3-E1 cells, mouse osteoblasts, in vitro and bone regeneration in a calvarial defect model of aged mouse in vivo. The salmon DNA fragments (300 bps) upregulated the expression of the osteogenic markers, such as alkaline phosphatase, Runx2, and osterix (Osx) in MC3T3E1 cells compared with incubation with osteogenic induction medium alone. Measurement of phosphate ion concentrations in cultures showed that the DNA scaffold degraded phosphate ions were released to the cell cultures. Interestingly, we found that the inclusion of DNA in osteoblastic cell cultures upregulated the expression of sodium-dependent phosphate (NaPi) cotransporters, SLC20A1 and SLC34A2, in MC3T3-E1 cells in a time dependent manner. Furthermore, the inclusion of DNA in cell cultures increased the transcellular permeability of phosphate. Conversely, the incubation of phosphonoformic acid, an inhibitor of NaPi cotransporters, attenuated the DNA-induced expression and activation of SLC20A1 and SLC34A2 in MC3T3-E1 cells, resulting in suppression of the osteogenic markers. The implantation of a salmon DNA scaffold disk promoted bone regeneration using calvarial defect models in 30-week-old mice. Our results indicate that the phosphate released from salmon DNA upregulated the expression and activation of NaPi cotransporters, resulting in the promotion of bone regeneration.


Assuntos
DNA/genética , Osteoblastos/citologia , Osteogênese/genética , Fraturas Cranianas/terapia , Proteínas Cotransportadoras de Sódio-Fosfato/genética , Alicerces Teciduais , Células 3T3 , Animais , Diferenciação Celular/genética , DNA/administração & dosagem , Implantes de Medicamento/administração & dosagem , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Osteoblastos/fisiologia , Radiografia , Salmão/genética , Fraturas Cranianas/diagnóstico por imagem , Fraturas Cranianas/fisiopatologia , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA