Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 62(13): 6190-6213, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31259550

RESUMO

Recruitment of suppressive CD4+ FOXP3+ regulatory T cells (Treg) to the tumor microenvironment (TME) has the potential to weaken the antitumor response in patients receiving treatment with immuno-oncology (IO) agents. Human Treg express CCR4 and can be recruited to the TME through the CC chemokine ligands CCL17 and CCL22. In some cancers, Treg accumulation correlates with poor patient prognosis. Preclinical data suggests that preventing the recruitment of Treg and increasing the population of activated effector T cells (Teff) in the TME can potentiate antitumor immune responses. We developed a novel series of potent, orally bioavailable small molecule antagonists of CCR4. From this series, several compounds exhibited high potency in distinct functional assays in addition to good in vitro and in vivo ADME properties. The design, synthesis, and SAR of this series and confirmation of its in vivo activity are reported.


Assuntos
Movimento Celular/efeitos dos fármacos , Pirazinas/farmacologia , Pirazóis/farmacologia , Receptores CCR4/antagonistas & inibidores , Linfócitos T Reguladores/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Animais , Cicloexanos/síntese química , Cicloexanos/farmacocinética , Cicloexanos/farmacologia , Descoberta de Drogas , Humanos , Camundongos Transgênicos , Estrutura Molecular , Piperazinas/síntese química , Piperazinas/farmacocinética , Piperazinas/farmacologia , Pirazinas/síntese química , Pirazinas/farmacocinética , Pirazóis/síntese química , Pirazóis/farmacocinética , Ratos , Relação Estrutura-Atividade
2.
Mol Pharm ; 11(7): 2442-52, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24836513

RESUMO

The use of the tumor suppressor p53 for gene therapy of cancer is limited by the dominant negative inactivating effect of mutant endogenous p53 in cancer cells. We have shown previously that swapping the tetramerization domain (TD) of p53 with the coiled-coil (CC) from Bcr allows for our chimeric p53 (p53-CC) to evade hetero-oligomerization with endogenous mutant p53. This enhances the utility of this construct, p53-CC, for cancer gene therapy. Because domain swapping to create p53-CC could result in p53-CC interacting with endogenous Bcr, which is ubiquitous in cells, modifications on the CC domain are necessary to minimize potential interactions with Bcr. Hence, we investigated the possible design of mutations that will improve homodimerization of CC mutants and disfavor hetero-oligomerization with wild-type CC (CCwt), with the goal of minimizing potential interactions with endogenous Bcr in cells. This involved integrated computational and experimental approaches to rationally design an enhanced version of our chimeric p53-CC tumor suppressor. Indeed, the resulting lead candidate p53-CCmutE34K-R55E avoids binding to endogenous Bcr and retains p53 tumor suppressor activity. Specifically, p53-CCmutE34K-R55E exhibits potent apoptotic activity in a variety of cancer cell lines, regardless of p53 status (in cells with mutant p53, wild-type p53, or p53-null cells). This construct overcomes the dominant negative effect limitation of wt p53 and has high significance for future gene therapy for treatment of cancers characterized by p53 dysfunction, which represent over half of all human cancers.


Assuntos
Genes Supressores de Tumor/fisiologia , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/genética , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Células MCF-7 , Mutação/genética , Polimerização
3.
Pharm Res ; 31(9): 2503-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24633417

RESUMO

PURPOSE: p53 targeted to the mitochondria is the fastest and most direct pathway for executing p53 death signaling. The purpose of this work was to determine if mitochondrial targeting signals (MTSs) from pro-apoptotic Bak and Bax are capable of targeting p53 to the mitochondria and inducing rapid apoptosis. METHODS: p53 and its DNA-binding domain (DBD) were fused to MTSs from Bak (p53-BakMTS, DBD-BakMTS) or Bax (p53-BaxMTS, DBD-BaxMTS). Mitochondrial localization was tested via fluorescence microscopy in 1471.1 cells, and apoptosis was detected via 7-AAD in breast (T47D), non-small cell lung (H1373), ovarian (SKOV-3) and cervical (HeLa) cancer cells. To determine that apoptosis is via the intrinsic apoptotic pathway, TMRE and caspase-9 assays were conducted. Finally, the involvement of p53/Bak specific pathway was tested. RESULTS: MTSs from Bak and Bax are capable of targeting p53 to the mitochondria, and p53-BakMTS and p53-BaxMTS cause apoptosis through the intrinsic apoptotic pathway. Additionally, p53-BakMTS, DBD-BakMTS, p53-BaxMTS and DBD-BaxMTS caused apoptosis in T47D, H1373, SKOV-3 and HeLa cells. The apoptotic mechanism of p53-BakMTS and DBD-BakMTS was Bak dependent. CONCLUSION: Our data demonstrates that p53-BakMTS (or BaxMTS) and DBD-BakMTS (or BaxMTS) cause apoptosis at the mitochondria and can be used as a potential gene therapeutic in cancer.


Assuntos
Mitocôndrias/metabolismo , Neoplasias/terapia , Proteínas Recombinantes de Fusão/genética , Proteína Supressora de Tumor p53/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética , Sequência de Aminoácidos , Apoptose , Linhagem Celular Tumoral , Terapia Genética , Células HeLa , Humanos , Mitocôndrias/genética , Dados de Sequência Molecular , Neoplasias/genética , Neoplasias/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Transdução de Sinais , Transfecção , Proteína Supressora de Tumor p53/química , Proteína Killer-Antagonista Homóloga a bcl-2/química , Proteína X Associada a bcl-2/química
4.
Mol Pharm ; 10(10): 3592-602, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23968395

RESUMO

The tumor suppressor p53 is one of the most studied proteins in human cancer.1-3 While nuclear p53 has been utilized for cancer gene therapy, mitochondrial targeting of p53 has not been fully exploited to date.4,5 In response to cellular stress, p53 translocates to the mitochondria and directly interacts with Bcl-2 family proteins including antiapoptotic Bcl-XL and Bcl-2 and proapoptotic Bak and Bax.6 Antiapoptotic Bcl-XL forms inhibitory complexes with proapoptotic Bak and Bax preventing their homo-oligomerization.7 Upon translocation to the mitochondria, p53 binds to Bcl-XL, releases Bak and Bax from the inhibitory complex and enhances their homo-oligomerization.8 Bak and Bax homotetramer formation disrupts the mitochondrial outer membrane, releases antiapoptotic factors such as cytochrome c and triggers a rapid apoptotic response mediated by caspase induction.9 It is still unclear if the MDM2 binding domain (MBD), the proline-rich domain (PRD) and/or DNA binding domain (DBD) of p53 are the domains responsible for interaction with Bcl-XL.10-17 The purpose of this work is to determine if a smaller functional domain of p53 is capable of inducing apoptosis similarly to full length p53. To explore this question, different domains of p53 (MBD, PRD, DBD) were fused to the mitochondrial targeting signal (MTS) from Bcl-XL to ensure Bcl-XL specific targeting.18 The designed constructs were tested for apoptotic activity (TUNEL, Annexin-V, and 7-AAD) in 3 different breast cancer cell lines (T47D, MCF-7, MDA-MB-231), in a cervical cancer cell line (HeLa) and in non-small cell lung adenocarcinoma cells H1373. Our results indicate that DBD-XL (p53 DBD fused to the Bcl-XL MTS) reproduces (in T47D cells) or demonstrates increased apoptotic activity (in MCF-7, MDA-MB-231, and HeLa cells) compared to p53-XL (full length p53 fused to Bcl-XL MTS). Additionally, mitochondrial dependent apoptosis assays (TMRE, caspase-9), co-IP and overexpression of Bcl-XL in T47D cells suggest that DBD fused to XL MTS may bind to and inhibit Bcl-XL. Taken together, our data demonstrates for the first time that the DBD of p53 may be the minimally necessary domain for achieving apoptosis at the mitochondria in multiple cell lines. This work highlights the role of small functional domains of p53 as a novel cancer biologic therapy.


Assuntos
Mitocôndrias/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Humanos , Imunoprecipitação , Marcação In Situ das Extremidades Cortadas , Camundongos , Estrutura Terciária de Proteína , Proteína Supressora de Tumor p53/genética , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
5.
Mol Pharm ; 10(10): 3922-33, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23964676

RESUMO

Because of the dominant negative effect of mutant p53, there has been limited success with wild-type (wt) p53 cancer gene therapy. Therefore, an alternative oligomerization domain for p53 was investigated to enhance the utility of p53 for gene therapy. The tetramerization domain of p53 was substituted with the coiled-coil (CC) domain from Bcr (breakpoint cluster region). Our p53 variant (p53-CC) maintains proper nuclear localization in breast cancer cells detected via fluorescence microscopy and shows a similar expression profile of p53 target genes as wt-p53. Additionally, similar tumor suppressor activities of p53-CC and wt-p53 were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), annexin-V, 7-aminoactinomycin D (7-AAD), and colony-forming assays. Furthermore, p53-CC was found to cause apoptosis in four different cancer cell lines, regardless of endogenous p53 status. Interestingly, the transcriptional activity of p53-CC was higher than wt-p53 in 3 different reporter gene assays. We hypothesized that the higher transcriptional activity of p53-CC over wt-p53 was due to the sequestration of wt-p53 by endogenous mutant p53 found in cancer cells. Co-immunoprecipitation revealed that wt-p53 does indeed interact with endogenous mutant p53 via its tetramerization domain, while p53-CC escapes this interaction. Therefore, we investigated the impact of the presence of a transdominant mutant p53 on tumor suppressor activities of wt-p53 and p53-CC. Overexpression of a potent mutant p53 along with wt-p53 or p53-CC revealed that, unlike wt-p53, p53-CC retains the same level of tumor suppressor activity. Finally, viral transduction of wt-p53 and p53-CC into a breast cancer cell line that harbors a tumor derived transdominant mutant p53 validated that p53-CC indeed evades sequestration and consequent transdominant inhibition by endogenous mutant p53.


Assuntos
Proteína Supressora de Tumor p53/metabolismo , Apoptose , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Imunoprecipitação , Marcação In Situ das Extremidades Cortadas , Proteína Supressora de Tumor p53/genética
6.
Mol Pharm ; 10(4): 1350-9, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23402381

RESUMO

The tumor suppressor protein p53 induces apoptosis, cell cycle arrest, and DNA repair along with other functions in a transcription-dependent manner [Vousden, K. H. Cell 2000, 103(5), 691-694]. The selection of these functions depends on sequence-specific recognition of p53 to a target decameric sequence of gene promoters [Kitayner, M.; et al. Mol. Cell 2006, 22(6), 741-753]. Amino acid residues in p53 that directly bind to DNA were analyzed, and the replacement of A276 in p53 with selected amino acids elucidated its importance in promoter transcription. For most apoptotic and cell cycle gene promoters, position 9 of the target decameric sequence is a cytosine, while for DNA repair gene promoters, thymine is found instead. Therefore, selective binding to the cytosine at the ninth position may transcribe apoptotic gene promoters and thus can induce apoptosis and cell cycle arrest. Molecular modeling with PyMOL indicated that substitution of a hydrophilic residue, A276S, would prefer binding to cytosine at the ninth position of the target decameric sequence, whereas substitution of a hydrophobic residue (A276F) would fail to do so. Correspondingly, A276S demonstrated higher transcription of PUMA, PERP, and p21(WAF1/CIP1)gene promoters containing a cytosine at the ninth position and lower transcription of GADD45 gene promoter containing a thymine at the ninth position compared to wild-type p53. Cell cycle analysis showed that A276S maintained similar G1/G0 phase arrest as wild-type p53. Additionally, A276S induced higher apoptosis than wild-type p53 as measured by DNA segmentation and 7-AAD assay. Since the status of endogenous p53 can influence the activity of the exogenous p53, we examined the activity of A276S in HeLa cells (wild-type endogenous p53) in addition to T47D cells (mutated and mislocalized endogenous p53). The same apoptotic trend in both cell lines suggested A276S can induce cell death regardless of endogenous p53 status. Cell proliferation assay depicted that A276S efficiently reduced the viability of T47D cells more than wild-type p53 over time. We conclude that the predicted preferred binding of A276S to cytosine at the ninth position better transactivates a number of apoptotic gene promoters. Higher induction apoptosis than wild-type p53 makes A276S an attractive candidate for therapy to eradicate cancer.


Assuntos
Apoptose , Mutação , Proteína Supressora de Tumor p53/genética , Ciclo Celular , Proliferação de Células , Sobrevivência Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , DNA/química , Terapia Genética/métodos , Células HeLa , Humanos , Necrose , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica , Ativação Transcricional , Proteína Supressora de Tumor p53/fisiologia
7.
Mol Pharm ; 9(5): 1449-58, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22380534

RESUMO

Targeting the tumor suppressor p53 to the mitochondria triggers a rapid apoptotic response as efficiently as transcription-dependent p53. (1, 2) p53 forms a complex with the antiapoptotic Bcl-XL, which leads to Bak and Bax oligomerization resulting in apoptosis via mitochondrial outer membrane permeabilization. (3, 4) Although p53 performs its main role in the mitochondrial outer membrane, it also interacts with different proteins in the mitochondrial inner membrane and matrix. (5, 6) To further investigate mitochondrial activity of p53, EGFP-p53 was fused to different mitochondrial targeting signals (MTSs) directing it to the mitochondrial outer membrane ("XL-MTS" from Bcl-XL; "TOM-MTS" from TOM20), the inner membrane ("CCO-MTS" from cytochrome c oxidase), or matrix ("OTC-MTS" from ornithine transcarbamylase). Fluorescence microscopy and a p53 reporter dual luciferase assay demonstrated that fusing MTSs to p53 increased mitochondrial localization and nuclear exclusion depending on which MTS was used. To examine if the MTSs initiate mitochondrial damage, we fused each individual MTS to EGFP (a nontoxic protein) as negative controls. We performed caspase-9, TUNEL, annexin-V, and 7-AAD apoptosis assays on T47D breast cancer cells transfected with mitochondrial constructs. Except for EGFP-XL, apoptotic potential was observed in all MTS-EGFP-p53 and MTS-EGFP constructs. In addition, EGFP-p53-XL showed the greatest significant increase in programmed cell death compared to its nontoxic MTS control (EGFP-XL). The apoptotic mechanism for each construct was further investigated using pifithrin-α (an inhibitor of p53 transcriptional activity), pifithrin-µ (a small molecule that reduces binding of p53 to Bcl-2 and Bcl-XL), and overexpressing the antiapoptotic Bcl-XL. Unlike the MTSs from TOM, CCO, and OTC, which showed different apoptotic mechanisms, we conclude that p53 fused to the MTS from Bcl-XL performs its apoptotic potential exclusively through the p53/Bcl-XL specific pathway.


Assuntos
Apoptose/fisiologia , Mitocôndrias/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzotiazóis/farmacologia , Linhagem Celular , Marcação In Situ das Extremidades Cortadas , Camundongos , Mitocôndrias/genética , Plasmídeos/genética , Sulfonamidas/farmacologia , Tolueno/análogos & derivados , Tolueno/farmacologia , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA