Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108554

RESUMO

Neuropilin 1 (NRP1), a non-tyrosine kinase receptor for several ligands, is highly expressed in many kinds of mesenchymal stem cells (MSCs), but its function is poorly understood. In this study, we explored the roles of full-length NRP1 and glycosaminoglycan (GAG)-modifiable NRP1 in adipogenesis in C3H10T1/2 cells. The expression of full-length NRP1 and GAG-modifiable NRP1 increased during adipogenic differentiation in C3H10T1/2 cells. NRP1 knockdown repressed adipogenesis while decreasing the levels of Akt and ERK1/2 phosphorylation. Moreover, the scaffold protein JIP4 was involved in adipogenesis in C3H10T1/2 cells by interacting with NRP1. Furthermore, overexpression of non-GAG-modifiable NRP1 mutant (S612A) greatly promoted adipogenic differentiation, accompanied by upregulation of the phosphorylated Akt and ERK1/2. Taken together, these results indicate that NRP1 is a key regulator that promotes adipogenesis in C3H10T1/2 cells by interacting with JIP4 and activating the Akt and ERK1/2 pathway. Non-GAG-modifiable NRP1 mutant (S612A) accelerates the process of adipogenic differentiation, suggesting that GAG glycosylation is a negative post-translational modification of NRP1 in adipogenic differentiation.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Adipogenia/genética , Neuropilina-1/genética , Neuropilina-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo
2.
Anat Sci Int ; 98(4): 521-528, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37022568

RESUMO

Osteoblasts alignment and migration are involved in the directional formation of bone matrix and bone remodeling. Many studies have demonstrated that mechanical stretching controls osteoblast morphology and alignment. However, little is known about its effects on osteoblast migration. Here, we investigated changes in the morphology and migration of preosteoblastic MC3T3-E1 cells after the removal of continuous or cyclic stretching. Actin staining and time-lapse recording were performed after stretching removal. The continuous and cyclic groups showed parallel and perpendicular alignment to the stretch direction, respectively. A more elongated cell morphology was observed in the cyclic group than in the continuous group. In both stretch groups, the cells migrated in a direction roughly consistent with the cell alignment. Compared to the other groups, the cells in the cyclic group showed an increased migration velocity and were almost divided in the same direction as the alignment. To summarize, our study showed that mechanical stretching changed cell alignment and morphology in osteoblasts, which affected the direction of migration and cell division, and velocity of migration. These results suggest that mechanical stimulation may modulate the direction of bone tissue formation by inducing the directional migration and cell division of osteoblasts.


Assuntos
Actinas , Osteoblastos , Osteoblastos/fisiologia , Osso e Ossos , Divisão Celular
3.
Biochem Biophys Res Commun ; 646: 50-55, 2023 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-36706705

RESUMO

Post-translational modification (PTM) is crucial for many biological events, such as the modulation of bone metabolism. Phosphorylation and O-GlcNAcylation are two examples of PTMs that can occur at the same site in the protein: serine and threonine residues. This phenomenon may cause crosstalk and possible interactions between the molecules involved. Protein phosphatase 2 A (PP2A) is widely expressed throughout the body and plays a major role in dephosphorylation. At the same location where PP2A acts, O-GlcNAc transferase (OGT) can introduce uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) molecules and mediates O-GlcNAc modifications. To examine the effects of PP2A inhibition on OGT localization and expression, osteoblastic MC3T3-E1 cells were treated with Okadaic Acid (OA), a potent PP2A inhibitor. In the control cells, OGT was strictly localized in the nucleus. However, OGT was observed diffusely in the cytoplasm of the OA-treated cells. This change in localization from the nucleus to the cytoplasm resulted from an increase in mitochondrial OGT expression and translocation of the nucleocytoplasmic isoform. Furthermore, knockdown of PP2A catalytic subunit α isoform (PP2A Cα) significantly affected OGT expression (p < 0.05), and there was a correlation between PP2A Cα and OGT expression (r = 0.93). These results suggested a possible interaction between PP2A and OGT, which strengthens the notion of an interaction between phosphorylation and O-GlcNAcylation.


Assuntos
Proteína Fosfatase 2 , Processamento de Proteína Pós-Traducional , Proteína Fosfatase 2/metabolismo , Ácido Okadáico/farmacologia , N-Acetilglucosaminiltransferases/metabolismo , Isoformas de Proteínas/metabolismo , Acetilglucosamina/metabolismo
4.
Oral Dis ; 29(4): 1613-1621, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35181970

RESUMO

BACKGROUND: Osteoblasts suppress osteoclastogenesis during the reversal phase of bone remodelling and the mechanism needs to be further investigated. Here, we investigated the role of histone demethylase Jumonji domain-containing 3 (Jmjd3) in osteoblasts on regulating osteoclastogenesis. METHODS: Jmjd3 expression was silenced in osteoblasts. Osteoblasts and osteoclasts were co-cultured in direct or indirect contact ways, and osteoclastogenesis was determined by tartrate-resistant acid phosphatase (TRAP) staining and Western blotting. Additionally, Ephrin receptor B4 (EphB4) and receptor activator of nuclear factor-kappa Β ligand (RANKL) expression were quantified in osteoblasts via real-time PCR, Western blotting, and enzyme-linked immunosorbent assay. Subsequently, EphB4 was overexpressed in osteoblasts and RANKL expression and osteoclastogenesis was quantified. RESULTS: Osteoclastogenesis and marker protein expression levels was promoted when osteoclasts were co-cultured with Jmjd3-silenced osteoblasts. Silencing of Jmjd3 expression in osteoblasts decreased EphB4 expression, owing to suppression of demethylation of H3K27me3 on the promoter region of EphB4. Whereas RANKL expression was upregulated in Jmjd3-silenced osteoblasts. Overexpression of EphB4 in osteoblasts inhibited osteoclastogenesis and RANKL expression. CONCLUSION: Jmjd3 in osteoblasts is a crucial regulator of osteoblast-to-osteoclast communication through EphB4-EphrinB2, RANKL-RANK and EphB4-RANKL signalling axes, suggesting the pivotal role of Jmjd3 in bone remodelling process in bone destruction disease such as chronic apical periodontitis.


Assuntos
Osteoblastos , Osteogênese , Diferenciação Celular , Células Cultivadas , Ligantes , NF-kappa B/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Transdução de Sinais
5.
Acta Med Okayama ; 76(3): 281-290, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35790358

RESUMO

Periodontal ligament (PDL) cells are critical for the bone remodeling process in periapical lesions since they can differentiate into osteoblasts and secrete osteoclastogenesis-promoting cytokines. Post-translational histone modifications including alterations of the methylation status of H3K27 are involved in cell differentiation and inflammatory reaction. The histone demethylase Jumonji domain-containing 3 (Jmjd3) specifically removes methylation of H3K27. We investigated whether Jmjd3 is involved in the osteogenic differentiation and secretion of PDL cells' inflammatory factors. Jmjd3 expression in periapical lesions was examined by immunostaining. Using siRNA specific for Jmjd3 or the specific Jmjd3 inhibitor GSK-J4, we determined Jmjd3's roles in osteogenic differentiation and cytokine production by real-time RT-PCR. The locations of Jmjd3 and NF-κB were analyzed by immunocytochemistry. Compared to healthy PDLs, the periapical lesion samples showed higher Jmjd3 expression. Treatment with GSK-J4 or Jmjd3 siRNA suppressed PDL cells' osteogenic differentiation by suppressing the expressions of bone-related genes (Runx2, Osterix, and osteocalcin) and mineralization. Jmjd3 knockdown decreased the expressions of cytokines (TNF-α, IL-1ß, and IL-6) induced by lipopolysaccharide extracted from Porphyromonas endodontalis (Pe-LPS). Pe-LPS induced the nuclear translocations of Jmjd3 and NF-κB; the latter was inhibited by GSK-J4 treatment. Jmjd3 appears to regulate PDL cells' osteogenic differentiation and proinflammatory cytokine expressions.


Assuntos
Osteogênese , Ligamento Periodontal , Diferenciação Celular , Citocinas , Histona Desmetilases , Humanos , Lipopolissacarídeos , NF-kappa B , RNA Interferente Pequeno
6.
Calcif Tissue Int ; 111(3): 331-344, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35750933

RESUMO

Our previous gene profiling analysis showed that the transcription cofactor vestigial-like 3 (VGLL3) gene expression was upregulated by mechanical tension in the mouse cranial suture, coinciding with accelerated osteoblast differentiation. Therefore, we hypothesized that VGLL3 plays a significant role in osteogenic differentiation. To clarify the function of VGLL3 in osteoblasts, we examined its expression characteristics in mouse bone tissue and the osteoblastic cell line MC3T3-E1. We further examined the effects of Vgll3 knockdown on osteoblast differentiation and bone morphogenetic protein (BMP) signaling. In the mouse cranial suture, where membranous ossification occurs, VGLL3 was immunohistochemically detected mostly in the nucleus of osteoblasts, preosteoblasts, and fibroblastic cells. VGLL3 expression in MC3T3-E1 cells was transient and peaked at a relatively early stage of differentiation. RNA sequencing revealed that downregulated genes in Vgll3-knockdown cells were enriched in gene ontology terms associated with osteoblast differentiation. Interestingly, most of the upregulated genes were related to cell division. Targeted Vgll3 knockdown markedly suppressed the expression of major osteogenic transcription factors (Runx2, Sp7/osterix, and Dlx5) and osteoblast differentiation. It also attenuated BMP signaling; moreover, exogenous BMP2 partially restore osteogenic transcription factors' expression in Vgll3-knockdown cells. Furthermore, overexpression of Vgll3 increased the expression of osteogenic transcription factors. These results suggest that VGLL3 plays a critical role in promoting osteoblast differentiation and that part of the process is mediated by BMP signaling. Further elucidation of VGLL3 function will increase our understanding of osteogenesis and skeletal disease etiology.


Assuntos
Osteogênese , Fatores de Transcrição , Animais , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/fisiologia , Camundongos , Osteoblastos/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
7.
Microorganisms ; 10(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35630443

RESUMO

To investigate the effect of the maternal gut microbiome on fetal endochondral bone formation, fetuses at embryonic day 18 were obtained from germ-free (GF) and specific-pathogen-free (SPF) pregnant mothers. Skeletal preparation of the fetuses' whole bodies did not show significant morphological alterations; however, micro-CT analysis of the tibiae showed a lower bone volume fraction in the SPF tibia. Primary cultured chondrocytes from fetal SPF rib cages showed a lower cell proliferation and lower accumulation of the extracellular matrix. RNA-sequencing analysis showed the induction of inflammation-associated genes such as the interleukin (IL) 17 receptor, IL 6, and immune-response genes in SPF chondrocytes. These data indicate that the maternal gut microbiome in SPF mice affects fetal embryonic endochondral ossification, possibly by changing the expression of genes related to inflammation and the immune response in fetal cartilage. The gut microbiome may modify endochondral ossification in the fetal chondrocytes passing through the placenta.

8.
Jpn Dent Sci Rev ; 57: 138-146, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34484474

RESUMO

Extracellular vesicles (EVs) have been recognized as a universal method of cellular communications and are reportedly produced in bacteria, archaea, and eukaryotes. Bacterial EVs are often called "Outer Membrane Vesicles" (OMVs) as they were the result of a controlled blebbing of the outer membrane of gram-negative bacteria such as Porphyromonas gingivalis (P. gingivalis). Bacterial EVs are natural messengers, implicated in intra- and inter-species cell-to-cell communication among microorganism populations present in microbiota. Bacteria can incorporate their pathogens into OMVs; the content of OMVs differs, depending on the type of bacteria. The production of distinct types of OMVs can be mediated by different factors and routes. A recent study highlighted OMVs ability to carry crucial molecules implicated in immune modulation, and, nowadays, they are considered as a way to communicate and transfer messages from the bacteria to the host and vice versa. This review article focuses on the current understanding of OMVs produced from major oral bacteria, P. gingivalis: generation, characteristics, and contents as well as the involvement in signal transduction of host cells and systemic diseases. Our recent study regarding the action of P. gingivalis OMVs in the living body is also summarized.

9.
Biochim Biophys Acta Mol Basis Dis ; 1867(11): 166236, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389473

RESUMO

Periodontal diseases are common inflammatory diseases that are induced by infection with periodontal bacteria such as Porphyromonas gingivalis (Pg). The association between periodontal diseases and many types of systemic diseases has been demonstrated; the term "periodontal medicine" is used to describe how periodontal infection/inflammation may impact extraoral health. However, the molecular mechanisms by which the factors produced in the oral cavity reach multiple distant organs and impact general health have not been elucidated. Extracellular vesicles (EVs) are nano-sized spherical structures secreted by various types of cells into the tissue microenvironment, and influence pathophysiological conditions by delivering their cargo. However, a detailed understanding of the effect of EVs on periodontal medicine is lacking. In this study, we investigated whether EVs derived from Pg-infected macrophages reach distant organs in mice and influence the pathophysiological status. EVs were isolated from human macrophages, THP-1 cells, infected with Pg. We observed that EVs from Pg-infected THP-1 cells (Pg-inf EVs) contained abundant core histone proteins such as histone H3 and translocated to the lungs, liver, and kidneys of mice. Pg-inf EVs also induced pulmonary injury, including edema, vascular congestion, inflammation, and collagen deposition causing alveoli destruction. The Pg-inf EVs or the recombinant histone H3 activated the NF-κB pathway, leading to increase in the levels of pro-inflammatory cytokines in human lung epithelial A549 cells. Our results suggest a possible mechanism by which EVs produced in periodontal diseases contribute to the progression of periodontal medicine.


Assuntos
Vesículas Extracelulares/imunologia , Lesão Pulmonar/imunologia , Macrófagos/imunologia , Periodontite/complicações , Porphyromonas gingivalis/imunologia , Células A549 , Animais , Infecções por Bacteroidaceae , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Lesão Pulmonar/patologia , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Periodontite/imunologia , Periodontite/microbiologia , Porphyromonas gingivalis/patogenicidade , Células THP-1
10.
Biofactors ; 47(6): 992-1015, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34418170

RESUMO

This study aimed to reveal the possible mechanisms by which O-linked-N-acetylglucosaminylation (O-GlcNAcylation) regulates osteoblast differentiation using a series of bioinformatics-oriented experiments. To examine the influence of O-GlcNAcylation levels on osteoblast differentiation, osteoblastic MC3T3-E1 cells were treated with O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) inhibitors. Correlations between the levels of O-GlcNAcylation and the expression of osteogenic markers as well as OGT were evaluated by qPCR and western blotting. The O-GlcNAcylated proteins assumed to correlate with Runx2 expression were retrieved from several public databases and used for further bioinformatics analysis. Following the findings of the bioinformatics analysis, intracellular calcium ([Ca2+ ]i ) was monitored in the cells treated with OGT and OGA inhibitors using a confocal laser-scanning microscope (CLS). The interaction effect between O-GlcNAcylation and [Ca2+ ]i on osteogenic marker expression was determined using stable OGT knockdown MC3T3-E1 cells. O-GlcNAcylation was positively associated with osteoblast differentiation. The time-course profile of global O-GlcNAcylated proteins showed a distinctive pattern with different molecular weights during osteoblast differentiation. The expression pattern of several O-GlcNAcylated proteins was significantly similar to that of Runx2 expression. Bioinformatic analysis of the retrieved Runx2-related-O-GlcNAcylated-proteins revealed the importance of [Ca2+ ]i . CLS showed that alteration of O-GlcNAcylation rapidly changed [Ca2+ ]i in MC3T3-E1 cells. O-GlcNAcylation and [Ca2+ ]i showed an interaction effect on the expression of osteogenic markers. OGT knockdown disrupted the [Ca2+ ]i -induced expression changes of osteogenic markers. O-GlcNAcylation interacts with [Ca2+ ]i and elicits osteoblast differentiation by regulating the expression of osteogenic markers.


Assuntos
Sinalização do Cálcio/fisiologia , Diferenciação Celular/fisiologia , Biologia Computacional/métodos , N-Acetilglucosaminiltransferases/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Animais , Camundongos , Modelos Animais
11.
J Oral Biosci ; 63(1): 14-22, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33497844

RESUMO

BACKGROUND: Recently, the relationship between the maternal oral environment and complicated pregnancies has been discussed in depth. The depletion of all bacterial flora, including oral bacteria, significantly decreased the size of the maternal placenta and suppressed fetal bone reabsorption. Furthermore, bacterial flora DNA of the host placenta has been reported to be remarkably similar to that of oral flora DNA. These findings indicate that maternal oral flora has a considerable effect on the formation of the placenta and fetus. HIGHLIGHT: Placenta is a sophisticated tissue, in which the fetus and mother exchange substance. Placental homeostasis affects the maternal and fetal health; therefore, any disorder in this context is directly linked to serious health issues for the mother and developmental inhibition of the fetus. Extracellular vesicles (EVs) possess and deliver various factors (i.e., nucleic acids, proteins, and lipids) to distant organs through intercellular crosstalk. EVs are released during natural physiological events as well as under stress conditions. EVs derived from reproductive tissues, such as the placenta, are deeply involved in all stages of pregnancy, including the maturation and survival of sperm and egg, various events during fertilization, implantation, spiral artery remodeling, and immunomodulation. CONCLUSION: To date, the precise role of EVs in oral diseases, including periodontal disease, is not well understood. Nonetheless, placental EVs are likely to attract attention, in the future, to objectively evaluate the effects of periodontal disease on maternal and fetal health. Therefore, the role of EVs throughout normal pregnancy will be discussed in this review.


Assuntos
Vesículas Extracelulares , Bactérias , Implantação do Embrião , Feminino , Feto , Humanos , Placenta , Gravidez
12.
Int J Mol Sci ; 21(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302495

RESUMO

Rab11b, abundantly enriched in endocytic recycling compartments, is required for the establishment of the machinery of vesicle trafficking. Yet, no report has so far characterized the biological function of Rab11b in osteoclastogenesis. Using in vitro model of osteoclasts differentiated from murine macrophages like RAW-D cells or bone marrow-derived macrophages, we elucidated that Rab11b served as an inhibitory regulator of osteoclast differentiation sequentially via (i) abolishing surface abundance of RANK and c-Fms receptors; and (ii) attenuating nuclear factor of activated T-cells c1 (NFATc-1) upstream signaling cascades, following RANKL stimulation. Rab11b was localized in early and late endosomes, Golgi complex, and endoplasmic reticulum; moreover, its overexpression enlarged early and late endosomes. Upon inhibition of lysosomal function by a specific blocker, chloroquine (CLQ), we comprehensively clarified a novel function of lysosomes on mediating proteolytic degradation of c-Fms and RANK surface receptors, drastically ameliorated by Rab11b overexpression in RAW-D cell-derived osteoclasts. These findings highlight the key role of Rab11b as an inhibitor of osteoclastogenesis by directing the transport of c-Fms and RANK surface receptors to lysosomes for degradation via the axis of early endosomes-late endosomes-lysosomes, thereby contributing towards the systemic equilibrium of the bone resorption phase.


Assuntos
Osteoclastos/metabolismo , Osteogênese , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Proteólise , Proteínas rab de Ligação ao GTP/genética
13.
PeerJ ; 8: e10244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240612

RESUMO

BACKGROUND: In this study, we investigated the effect of the mechanical loading history on the expression of receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) in MLO-Y4 osteocyte-like cells. METHODS: Three hours after MLO-Y4 osteocytes were seeded, a continuous compressive force (CCF) of 31 dynes/cm2 with or without additional CCF (32 dynes/cm2) was loaded onto the osteocytes. After 36 h, the additional CCF (loading history) was removed for a recovery period of 10 h. The expression of RANKL, OPG, RANKL/OPG ratio, cell numbers, viability and morphology were time-dependently examined at 0, 3, 6 and 10 h. Then, the same additional CCF was applied again for 1 h to all osteocytes with or without the gap junction inhibitor to examine the expression of RANKL, OPG, the RANKL/OPG ratio and other genes that essential to characterize the phenotype of MLO-Y4 cells. Fluorescence recovery after photobleaching technique was also applied to test the differences of gap-junctional intercellular communications (GJIC) among MLO-Y4 cells. RESULTS: The expression of RANKL and OPG by MLO-Y4 osteocytes without a loading history was dramatically decreased and increased, respectively, in response to the 1-h loading of additional weight. However, the expression of RANKL, OPG and the RANKL/OPG ratio were maintained at the same level as in the control group in the MLO-Y4 osteocytes with a loading history but without gap junction inhibitor treatment. Treatment of loading history significantly changed the capacity of GJIC and protein expression of connexin 43 (Cx43) but not the mRNA expression of Cx43. No significant difference was observed in the cell number or viability between the MLO-Y4 osteocyte-like cells with and without a loading history or among different time checkpoints during the recovery period. The cell morphology showed significant changes and was correlated with the expression of OPG, Gja1 and Dmp1 during the recovery period. CONCLUSION: Our findings indicated that the compressive force-induced changes in the RANKL/OPG expression could be habituated within at least 11 h by 36-h CCF exposure. GJIC and cell morphology may play roles in response to loading history in MLO-Y4 osteocyte-like cells.

14.
J Extracell Vesicles ; 9(1): 1769373, 2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-33144925

RESUMO

Evidence has been accumulating to indicate that extracellular vesicles (EVs), including exosomes, released by cancer cells can foster tumour progression. The molecular chaperones - CDC37, HSP90α and HSP90ß play key roles in cancer progression including epithelial-mesenchymal transition (EMT), although their contribution to EVs-mediated cell-cell communication in tumour microenvironment has not been thoroughly examined. Here we show that triple depletion of the chaperone trio attenuates numerous cancer malignancy events exerted through EV release. Metastatic oral cancer-derived EVs (MEV) were enriched with HSP90α HSP90ß and cancer-initiating cell marker CD326/EpCAM. Depletion of these chaperones individually induced compensatory increases in the other chaperones, whereas triple siRNA targeting of these molecules markedly diminished the levels of the chaperone trio and attenuated EMT. MEV were potent agents in initiating EMT in normal epithelial cells, a process that was attenuated by the triple chaperone depletion. The migration, invasion, and in vitro tumour initiation of oral cancer cells were significantly promoted by MEV, while triple depletion of CDC37/HSP90α/ß reversed these MEV-driven malignancy events. In metastatic oral cancer patient-derived tumours, HSP90ß was significantly accumulated in infiltrating tumour-associated macrophages (TAM) as compared to lower grade oral cancer cases. HSP90-enriched MEV-induced TAM polarization to an M2 phenotype, a transition known to support cancer progression, whereas the triple chaperone depletion attenuated this effect. Mechanistically, the triple chaperone depletion in metastatic oral cancer cells effectively reduced MEV transmission into macrophages. Hence, siRNA-mediated knockdown of the chaperone trio (CDC37/HSP90α/HSP90ß) could potentially be a novel therapeutic strategy to attenuate several EV-driven malignancy events in the tumour microenvironment. ABBREVIATIONS: CDC37: cell division control 37; EMT: epithelial-mesenchymal transmission; EV: extracellular vesicles; HNSCC: head and neck squamous cell carcinoma; HSP90: heat shock protein 90; TAM: tumour-associated macrophage.

15.
Cell Signal ; 75: 109740, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32818672

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is associated with periapical periodontitis. The lesions are characterized by a disorder in osteoblast metabolism. Quorum sensing molecular N-(3-oxododecanoyl)-homoserine lactone (AHL) is secreted by P. aeruginosa and governs the expression of numerous virulence factors. AHL can trigger intracellular calcium ([Ca2+]i) fluctuations in many host cells. However, it is unclear whether AHL can regulate osteoblast metabolism by affecting [Ca2+]i changes or its spatial correlation. We explored AHL-induced apoptosis and differentiation in pre-osteoblastic MC3T3-E1 cells and evaluated [Ca2+]i mobilization using several extraction methods. The spatial distribution pattern of [Ca2+]i among cells was investigated by Moran's I, an index of spatial autocorrelation. We found that 30 µM and 50 µM AHL triggered opposing osteoblast fates. At 50 µM, AHL inhibited osteoblast differentiation by promoting mitochondrial-dependent apoptosis and negatively regulating osteogenic marker genes, including Runx2, Osterix, bone sialoprotein (Bsp), and osteocalcin (OCN). In contrast, prolonged treatment with 30 µM AHL promoted osteoblast differentiation concomitantly with cell apoptosis. The elevation of [Ca2+]i levels in osteoblasts treated with 50 µM AHL was spatially autocorrelated, while no such phenomenon was observed in 30 µM AHL-treated osteoblasts. The blocking of cell-to-cell spatial autocorrelation in the osteoblasts provoked by 50 µM AHL significantly inhibited apoptosis and partially restored differentiation. Our observations suggest that AHL affects the fate of osteoblasts (apoptosis and differentiation) by affecting the spatial correlation of [Ca2+]i changes. Thus, AHL acts as a double-edged sword for osteoblast function.


Assuntos
4-Butirolactona/análogos & derivados , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Homosserina/análogos & derivados , Osteoblastos/patologia , Periodontite/microbiologia , Pseudomonas aeruginosa/patogenicidade , 4-Butirolactona/toxicidade , Animais , Linhagem Celular , Homosserina/toxicidade , Camundongos , Percepção de Quorum
16.
Arch Oral Biol ; 118: 104841, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32717445

RESUMO

OBJECTIVE: Porphyromonas gingivalis (P. gingivalis) is a major bacterium responsible for the progression of periodontitis. P. gingivalis produces small vesicles called outer membrane vesicles (OMVs) containing virulence factors. Increasing evidence suggests a close relationship between periodontitis and respiratory system diseases, such as aspiration pneumonia. However, little is known about whether P. gingivalis OMVs give rise to the impediment of lung epithelial cells. We investigated the effect of the OMVs on cell viability and tight junctions of lung epithelial cells. DESIGN: Human lung epithelial A549 cells were treated with P. gingivalis OMVs. Cell viability was evaluated, and cell morphology was examined using scanning electron and phase contrast microscopies. To detect apoptosis induced by P. gingivalis OMVs, activation of caspase-3 and poly ADP-ribose polymerase (PARP) cleavage was examined by using Western blotting. Immunocytochemistry was performed to stain tight junction proteins. RESULTS: P. gingivalis OMVs decreased cell viability in A549 cells in a dose- and time-dependent manner. Microscopic analysis revealed that the OMVs induced morphological changes leading to irregular cell membrane structures. The OMVs caused cell shrinkage, membrane blebbing, and cytoplasmic expulsion in a dose-dependent manner. Western blot analysis showed the OMVs induced caspase-3 activation and PARP cleavage. Treatment with the OMVs disrupted the intact distributions of tight junction proteins. CONCLUSIONS: These results indicate that P. gingivalis OMVs induced cell death by destroying the barrier system in lung epithelial cells. Our present study raises the possibility that P. gingivalis OMVs is an important factor in the engagement of periodontitis with respiratory system diseases.


Assuntos
Morte Celular , Células Epiteliais/citologia , Porphyromonas gingivalis/patogenicidade , Junções Íntimas/patologia , Fatores de Virulência/química , Células A549 , Caspase 3 , Células Epiteliais/patologia , Vesículas Extracelulares/química , Humanos , Pulmão/citologia , Poli(ADP-Ribose) Polimerases
17.
Cancers (Basel) ; 12(4)2020 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-32260433

RESUMO

Matrix metalloproteinase 3 (MMP3) plays multiple roles in extracellular proteolysis as well as intracellular transcription, prompting a new definition of moonlighting metalloproteinase (MMP), according to a definition of protein moonlighting (or gene sharing), a phenomenon by which a protein can perform more than one function. Indeed, connective tissue growth factor (CTGF, aka cellular communication network factor 2 (CCN2)) is transcriptionally induced as well as cleaved by MMP3. Moreover, several members of the MMP family have been found within tumor-derived extracellular vesicles (EVs). We here investigated the roles of MMP3-rich EVs in tumor progression, molecular transmission, and gene regulation. EVs derived from a rapidly metastatic cancer cell line (LuM1) were enriched in MMP3 and a C-terminal half fragment of CCN2/CTGF. MMP3-rich, LuM1-derived EVs were disseminated to multiple organs through body fluid and were pro-tumorigenic in an allograft mouse model, which prompted us to define LuM1-EVs as oncosomes in the present study. Oncosome-derived MMP3 was transferred into recipient cell nuclei and thereby trans-activated the CCN2/CTGF promoter, and induced CCN2/CTGF production in vitro. TRENDIC and other cis-elements in the CCN2/CTGF promoter were essential for the oncosomal responsivity. The CRISPR/Cas9-mediated knockout of MMP3 showed significant anti-tumor effects such as the inhibition of migration and invasion of tumor cells, and a reduction in CCN2/CTGF promoter activity and fragmentations in vitro. A high expression level of MMP3 or CCN2/CTGF mRNA was prognostic and unfavorable in particular types of cancers including head and neck, lung, pancreatic, cervical, stomach, and urothelial cancers. These data newly demonstrate that oncogenic EVs-derived MMP is a transmissive trans-activator for the cellular communication network gene and promotes tumorigenesis at distant sites.

18.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165731, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32088316

RESUMO

Outer membrane vesicles (OMVs) are nanosized particles derived from the outer membrane of gram-negative bacteria. Oral bacterium Porphyromonas gingivalis (Pg) is known to be a major pathogen of periodontitis that contributes to the progression of periodontal disease by releasing OMVs. The effect of Pg OMVs on systemic diseases is still unknown. To verify whether Pg OMVs affect the progress of diabetes mellitus, we analyzed the cargo proteins of vesicles and evaluated their effect on hepatic glucose metabolism. Here, we show that Pg OMVs were equipped with Pg-derived proteases gingipains and translocated to the liver in mice. In these mice, the hepatic glycogen synthesis in response to insulin was decreased, and thus high blood glucose levels were maintained. Pg OMVs also attenuated the insulin-induced Akt/glycogen synthase kinase-3 ß (GSK-3ß) signaling in a gingipain-dependent fashion in hepatic HepG2 cells. These results suggest that the delivery of gingipains mediated by Pg OMV elicits changes in glucose metabolisms in the liver and contributes to the progression of diabetes mellitus.


Assuntos
Membrana Externa Bacteriana/metabolismo , Cisteína Endopeptidases Gingipaínas/genética , Periodontite/genética , Porphyromonas gingivalis/genética , Animais , Membrana Externa Bacteriana/patologia , Modelos Animais de Doenças , Cisteína Endopeptidases Gingipaínas/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Resistência à Insulina/genética , Fígado/metabolismo , Fígado/microbiologia , Camundongos , Periodontite/microbiologia , Periodontite/patologia , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/patogenicidade , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética
19.
J Oral Biosci ; 62(1): 16-29, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31982630

RESUMO

BACKGROUND: Bacteria exhibit multi-cellular social behavior, such as biofilm formation, virulence generation, bioluminescence, or sporulation, through cell-to-cell communication involving a quorum sensing (QS) system capable of sensing species density. Pseudomonas aeruginosa (P. aeruginosa) is a ubiquitous gram-negative opportunistic pathogen that is frequently isolated from immunocompromised patients. It is particularly detected in patients with severe periodontitis and persistent endodontic infections, forcing a rethink of the role of this opportunistic pathogen in oral lesions. HIGHLIGHT: N-(3-oxododecanoyl)-l-homoserine lactone (OdDHL) is a pivotal QS molecule, which regulates numerous virulence genes in P. aeruginosa and exhibits broad biological modulation effects in mammalian cells. In this review, we highlight the diverse OdDHL-mediated apoptosis and immunomodulatory effects on host cells. The structural properties, signaling pathways, targeted genes and proteins, and intracellular metabolism of OdDHL are also discussed to clarify the interactions between P. aeruginosa and the host. CONCLUSION: The purpose of this review is to identify a valid target for quenching OdDHL, which could potentially eliminate the pathogenic effect of P. aeruginosa.


Assuntos
Homosserina , Percepção de Quorum , 4-Butirolactona/análogos & derivados , Animais , Homosserina/análogos & derivados , Humanos , Lactonas , Pseudomonas aeruginosa
20.
Anat Sci Int ; 95(2): 202-208, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31732869

RESUMO

Retinoic acid (RA), an active metabolite of vitamin A, plays pivotal roles in a wide variety of biological processes, such as body patterning, organ development, and cell differentiation and proliferation. RA signaling is mediated by nuclear retinoic acid receptors, α, ß, and γ (RARα, RARß, and RARγ). RA is a well-known regulator of cartilage and skeleton formation and RARs are also essential for skeletal growth and hypertrophic chondrocyte-specific gene expression. These important roles of RA and RARs in chondrogenesis have been widely investigated using in vivo mouse models. However, few reports are available on the function of each subtype of RARs on in vitro chondrocyte differentiation. Here, we examined the effect of specific agonists of RARs on chondrogenic differentiation of ATDC5 and C3H10T1/2 cells. Subtype-specific RAR agonists as well as RA decreased the expressions of chondrogenic differentiation marker genes and inhibited chondrogenic differentiation, which was accompanied with morphological change to spindle-shaped cells. Among RAR agonists, RARα and RARγ agonists revealed a strong inhibitory effect on chondrogenic differentiation. RARα and RARγ agonists also hampered viability of ATDC5 cells. These observations suggested that RARα and RARγ are dominant receptors of RA signaling that negatively regulate chondrogenic differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Condrócitos/fisiologia , Receptores do Ácido Retinoico/agonistas , Vitamina A/farmacologia , Vitamina A/fisiologia , Animais , Desenvolvimento Ósseo/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Condrogênese , Depressão Química , Expressão Gênica , Camundongos , Osteogênese/efeitos dos fármacos , Receptores do Ácido Retinoico/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA