Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Eur Rev Med Pharmacol Sci ; 24(9): 5127-5139, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32432777

RESUMO

OBJECTIVE: Phenotypic screening is one of the most practical approaches to the identification of mediators of behaviour, since it is difficult to model brain function in vitro, at a cellular level. We used a zebrafish (Danio rerio) behavioural assay to discover novel, natural, neuroactive compounds. MATERIALS AND METHODS: A zebrafish behavioural assay was performed for seven natural compounds, obtained from plants. The behavioural profiles were compared to those of known psychoactive drugs. We characterised a natural compound exhibiting a behaviour profile similar to that of suvorexant, using in silico, in vitro and microarray expression analysis. RESULTS: The behavioural analysis performed in this study classified central nervous system drugs according to their mechanism. Zebrafish treated with a natural compound, 8b-(4'-Hydroxytigloyloxy) costunolide (8b), showed behaviour profiles similar to those of zebrafish treated with suvorexant, a known orexin antagonist. This behavioural assay was validated using in silico and in vitro assays, which revealed that the new compound was a dual orexin receptor antagonist. In addition, transcriptome analysis suggested that 8b might regulate the nuclear factor-κB (NF-κB) related pathway. CONCLUSIONS: We conclude that zebrafish phenotypic screening, combined with in silico assays and gene expression profiling, is a useful strategy to discover and characterize novel therapeutic compounds, including natural products.


Assuntos
Azepinas/farmacologia , Comportamento Animal/efeitos dos fármacos , Produtos Biológicos/farmacologia , Antagonistas dos Receptores de Orexina/farmacologia , Plantas/química , Triazóis/farmacologia , Peixe-Zebra , Animais , Azepinas/química , Produtos Biológicos/química , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Antagonistas dos Receptores de Orexina/química , Receptores de Orexina/metabolismo , Triazóis/química
2.
Rev Sci Instrum ; 91(3): 033317, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259987

RESUMO

A laser ion source coupled with a radio frequency quadrupole linac accelerator is being proposed as a suitable system for the production of a low energy, high-current stable lithium beam. In order to maximize the lithium yield, plasmas generated by laser ablation of different materials based on lithium (Li, LiOH, and LiNbO3) have been characterized by using a Faraday cup and an electrostatic ion analyzer in the time of flight configuration. A wide range of laser power density has been investigated (109-1012 W/cm2) using two Nd:YAG lasers operating at different wavelengths (1064 nm and 532 nm), pulse durations (6 ns and 17 ns), and maximum energies (1400 mJ and 210 mJ). This paper outlines the pros and cons of the investigated materials by studying how the ion energy, yields, and charge state distributions are modified when the laser power density is changed. Considerable attention has been paid to the higher charge states of oxygen, which may occur with the same mass-to-charge ratio of Li3+. The analysis has evidenced that LiNbO3 represents a valid target since it allows minimizing the O6+/7Li3+ ratio down to 2.5% by using a laser power density of 1.8 × 1010 W/cm2. For such a condition, a Li3+ current of 1.4 mA/cm2 has been measured.

3.
Rev Sci Instrum ; 91(3): 033503, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32260004

RESUMO

We are developing a laser ion source to provide a high brightness multi-charged heavy ion beam as a part of the heavy ion beam probe system, which will be used to diagnose plasma potential in the Ring Trap 1 device at the University of Tokyo. As a probe beam, Nb2+ was selected, and a detailed laser irradiation condition was explored. It was found that the laser power density of 1.2 × 109 W/cm2 gives the maximum particle number of Nb2+ per laser energy from a niobium foil target. Essential ablation plasma parameters to design the laser ion source were also obtained. The expected beam current was more than 12 mA/cm2, with a pulse width of 3.1 µs at 200 mm away from the target.

4.
Rev Sci Instrum ; 91(2): 023320, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113381

RESUMO

High repetition-rate (∼10 kHz) ps-lasers are becoming available on the market with reasonable cost and may offer several advantages compared to ns-lasers by generating nearly continuous beams of singly charged ions appropriate for the "slow" injection mode into the Electron Beam Ion Source (EBIS). To evaluate these advantages, we will perform studies of a ps-laser generated plasma using a laser with a pulse duration of 8 ps and energy up to 5 mJ per pulse. A vacuum chamber equipped with a 3D target positioner, a focusing lens, and a Faraday Cup has been designed and built for this study. Lens-to-target distance variations have been measured using a laser tracker over the whole range of horizontal and vertical translation for all five targets we will use. The variations were found to be within ±150 µm. This degree of "target flatness" should be acceptable for our experimental conditions. Ion currents and ion pulse durations of various elements (from Al to Ta) will be measured for different target irradiation conditions (focal spot size and laser pulse energy). The results obtained will allow us to specify all parameters and geometry of a laser ion source based on a ps-laser to provide external ion injection into the relativistic heavy ion collider EBIS.

5.
Rev Sci Instrum ; 91(1): 013319, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32012530

RESUMO

To investigate the chiral magnetic effect, 96Zr and 96Ru beams were accelerated at the relativistic heavy ion collider (RHIC) during Run-18 at Brookhaven National Laboratory. The 96Zr beam was provided from the electron beam ion source (EBIS) injector, which consists of a laser ion source, an EBIS high charge state ion breeder, a 300 keV/u radio frequency quadrupole, and a 2 MeV/u interdigital H type drift tube linear accelerator (IH-DTL). The natural abundance of 96Zr is only 2.8% with about 50% of 90Zr. To obtain a sufficient beam current, Zr material enriched to about 60% of 96Zr was used. The only available form of the enriched material was zirconium oxide (ZrO2) powder, which was not well suited for a laser ion source target. We studied and established a sintering technique of the ZrO2 powder to make a solid sample which could be installed into the laser ion source. The singly charged Zr was produced in a laser ablation plasma, extracted, and delivered to the EBIS to be ionized further to 96Zr16+. We optimized the laser irradiation condition, the EBIS confinement time, and transport through the RF linacs to maximize the performance of the injector. The total number of shots provided from the laser ion source for injection into the EBIS was 489 910. The EBIS facility provided a 192 MeV stable beam of 96Zr16+ ions to the booster ring of alternating gradient synchrotron (AGS) for further acceleration and stripping in the AGS/RHIC complex, allowing for successful data acquisition at the Solenoidal Tracker at the RHIC.

6.
Rev Sci Instrum ; 90(11): 113314, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31779422

RESUMO

An advanced Electron Beam Ion Source (EBIS) is the primary ion source to supply highly charged ion beams of different elements to the Relativistic Heavy Ion Collider (RHIC) and to the NASA Space Radiation Laboratory (NSRL). Intense beams of highly charged ions of various elements of the periodic table, ranging from helium to uranium, have been demonstrated since EBIS became operational in 2010. EBIS routinely provides ion beams to RHIC and NSRL quasisimultaneously with about 1 s switching time between different ion species. Such unique flexibility and rapid switching between ion species are based on external injection of singly charged ions into the EBIS trap either in "fast" or "slow" injection modes. At present, a Laser Ion Source (LIS) provides most of the ion species of solid materials using the "fast" injection mode into the EBIS trap and a Hollow Cathode Ion Source (HCIS) provides most of the ion species of gaseous elements using the "slow" injection mode into the EBIS trap. Gas injection into the EBIS trap is also possible and has been used but imposes some restrictions for the simultaneous generation of highly charged ions such as Au32+ ions for RHIC and ions of gaseous species for NSRL. Because light ions have relatively high velocity inside the EBIS trap, efficient injection of hydrogen and helium ions and filling of the EBIS trap to high capacity is difficult from either LIS or HCIS. To overcome this restriction and enhance EBIS operational capability, we suggest injecting beams of hydrogen and helium cluster ions into the EBIS trap. Required parameters of cluster ion beam injection into the EBIS trap are estimated, and advantages of such an injection are highlighted. A cluster ion source with required high intensity is visible and will be designed, built, optimized, and tested.

7.
J Appl Microbiol ; 122(6): 1672-1679, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28375567

RESUMO

AIMS: To elucidate the biological characteristics and stability of a newly identified staphylococcal enterotoxin Q (SEQ) against heating and digestive enzymes and to evaluate the risk of seq-harbouring Staphylococcus aureus in food poisoning. METHODS AND RESULTS: Purified SEQ was treated with heating, pepsin and trypsin which are related to food cooking, stomach and intestine conditions, respectively. Superantigenic activity of SEQ was assessed by determining the ability of IL-2 induction in mouse spleen cells. The emetic activity of SEQ was assessed using house musk shrew, a small emetic animal model. The results revealed that SEQ exhibits a remarkable resistance to heat treatment and pepsin digestion and has significant superantigenic and emetic activities. Furthermore, a sandwich ELISA for detection of SEQ production was developed, and the results showed that seq-harboring S. aureus isolates produce a large amount of SEQ. CONCLUSIONS: The newly identified SEQ had remarkable stability to heat treatment and digestive enzyme degradation and exhibited significant superantigenic and emetic activities. In addition, seq-harbouring S. aureus isolated from food poisoning outbreaks produced a large amount of SEQ, suggesting that seq-harbouring S. aureus could potentially be a hazard for food safety. SIGNIFICANCE AND IMPACT OF THE STUDY: This study found, for the first time, that SEQ, a nonclassical SE, had remarkable stability to heat treatment and enzyme degradation and exhibited significant emetic activity, indicating that SEQ is a high-risk toxin in food poisoning.


Assuntos
Enterotoxinas/química , Doenças Transmitidas por Alimentos/microbiologia , Intoxicação Alimentar Estafilocócica , Animais , Eméticos/farmacologia , Enterotoxinas/metabolismo , Enterotoxinas/intoxicação , Ensaio de Imunoadsorção Enzimática , Humanos , Interleucina-2/metabolismo , Camundongos , Pepsina A/química , Medição de Risco , Musaranhos , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/metabolismo , Superantígenos/metabolismo , Temperatura , Tripsina/metabolismo
9.
Rev Sci Instrum ; 87(2): 02A901, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931962

RESUMO

Calcium and lithium ion beams are required by NASA Space Radiation Laboratory at Brookhaven National Laboratory to simulate the effects of cosmic radiation. To identify the difficulties in providing such highly reactive materials as laser targets, both species were experimentally tested. Plate shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6 ns 1064 nm neodymium-doped yttrium aluminum garnet laser. We found significant oxygen contamination in both the Ca and Li high charge state beams due to the rapid oxidation of the surfaces. A large spot size, low power density laser was used to create low charge state beams without scanning the targets. The low charge state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely of oxide with a low power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low power shot. To measure the rate of oxidation, we shot the low power laser at the target repeatedly at 10 s, 30 s, 60 s, and 120 s interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.

10.
Rev Sci Instrum ; 87(2): 02A906, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931967

RESUMO

We studied proton beam production from a laser ion source using hydrogen rich target materials. In general, gas based species are not suitable for laser ion sources since formation of a dense laser target is difficult. In order to achieve reliable operation, we tested hydride targets using a sub nanosecond Q-switched Nd-YAG laser, which may help suppress target material consumption. We detected enough yields of protons from a titanium hydride target without degradation of beam current during the experiment. The combination of a sub nanosecond laser and compressed hydride target may provide stable proton beam.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA