Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(13): 3330-3337, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132833

RESUMO

A low-cost flexible spectroscopic refractive index matching (SRIM) material with bandpass filtering properties without incidence angle and polarization dependence by randomly dispersing inorganic C a F 2 particles in organic polydimethylsiloxane (PDMS) materials was proposed in our previous study. Since the micron size of the dispersed particles is much larger than the visible wavelength, the calculation based on the commonly used finite-difference time-domain (FDTD) method to simulate light propagation through the SRIM material is too bulky; however, on the other hand, the light tracing method based on Monte Carlo theory in our previous study cannot adequately explain the process. Therefore, a novel approximate calculation model, to the best of our knowledge, based on phase wavefront perturbation is proposed that can well explain the propagation of light through this SRIM sample material and can also be used to approximate the soft scattering of light through composite materials with small refractive index differences, such as translucent ceramics. The model simplifies the complex superposition of wavefront phase disturbances and the calculation of scattered light propagation in space. The scattered and nonscattered light ratios; the light intensity distribution after transmission through the spectroscopic material; and the influence of absorption attenuation of the PDMS organic material on the spectroscopic performance are also considered. The simulation results based on the model are in great agreement with the experimental results. This work is important to further improve the performance of SRIM materials.

2.
Exp Cell Res ; 410(1): 112944, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822810

RESUMO

Photo-functionalization of titanium orthopedic/prosthetic implants using ultraviolet illumination is known to improve osteogenesis. Therefore, in this study, we aimed to examine the influence of vacuum ultraviolet (VUV)-treated titanium surfaces on osteoblast cell adhesion, activity, and differentiation. Osteoblastic cells were cultured on titanium substrates treated with various VUV treatment conditions (0, 6.2, 18.7, and 37.4 J/cm2) and their behavior was evaluated. The results revealed that cell adhesion was increased whereas cell activity and differentiation ability were decreased upon cell culture on VUV-treated substrates. In particular, cell activity and differentiation ability were dramatically suppressed with 18.7 J/cm2 VUV irradiation. Within the limitations of this cell-based experiment, we clarified the VUV treatment conditions in which cell adhesion was improved but cell activity and differentiation ability were suppressed. These results indicate that VUV-treatment can be used to influence cell growth properties and can be used to accelerate or suppress cell differentiation on implant substrates.


Assuntos
Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Osteogênese/efeitos dos fármacos , Titânio/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/efeitos da radiação , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Osteoblastos/efeitos dos fármacos , Osteoblastos/efeitos da radiação , Osteogênese/genética , Osteogênese/efeitos da radiação , Especificidade por Substrato , Propriedades de Superfície/efeitos dos fármacos , Propriedades de Superfície/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Vácuo
3.
Opt Lett ; 46(13): 3070, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197382

RESUMO

This publisher's note contains corrections to Opt. Lett.46, 262 (2021).OPLEDP0146-959210.1364/OL.412993.

4.
Opt Lett ; 46(2): 262-265, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33449003

RESUMO

A blended FC-V-50 and TZ-001 polymer-based microdisk laser was fabricated by the ink-jet printing method and used for biosensing applications. The FC-V-50 polymer has a negative charge due to the presence of carboxyl functional groups, and the TZ-001 polymer has a positive charge due to the tertiary amine group at a pH of seven. In biosensing applications, non-specific adsorption due to opposite charges of biomolecules and microdisk surfaces can adversely affect the performance of the biosensor. By mixing FC-V-50 and TZ-001 polymers in different ratios, the microdisk surface charge was controlled, and the non-specific adsorption of bovine serum albumin and lysozyme was studied. In addition, the label-free biosensing of streptavidin was demonstrated using a blended polymer-based microdisk laser. This work reports, to the best of our knowledge, the first demonstration of a blended polymer microdisk laser for controlling the non-specific adsorption of biomolecules.


Assuntos
Técnicas Biossensoriais/instrumentação , Lasers de Estado Sólido , Sistemas Microeletromecânicos , Muramidase/metabolismo , Polímeros/metabolismo , Impressão Tridimensional , Adsorção , Desenho de Equipamento , Impressão , Soroalbumina Bovina/metabolismo
5.
Talanta ; 218: 121102, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32797869

RESUMO

A flow enzyme-linked immunosorbent assay (ELISA) method based on light absorption by enzymatically generated aniline oligomer in the presence of horseradish peroxidase (HRP), H2O2, and aniline is proposed. Aniline oligomer is rapidly formed through the polymerization reaction via the enzymatic reaction, and its fast reaction rate is beneficial for flow ELISA. An anti-3-phenoxybenzoic acid monoclonal antibody (mAb) was produced by mice, and was used for the flow competitive ELISA for the determination of 3-phenoxybenzoic acid (3PBA), which was performed on an acrylic plate having a Y-shaped channel. ABS resin beads (d = 1 mm) were filled in the channel to increase the surface area for the adsorption of the mAb. A clank-type detection chamber (optical length: 1 cm) made of polydimethylsiloxane (PDMS) containing carbon black, which can significantly decrease light scattering, was fabricated with a 3D printer. The PDMS detection chamber was connected to the outlet of the acrylic flow chip with a tube. A blue LED was used as a light source for the flow ELISA. The inhabitation concentration at 50% and the detection range (absorbance change from 90 to 10%) for the proposed flow competitive ELISA were 0.5 ppm and 0.05-5 ppm, respectively. We also performed the flow competitive ELISA in an artificial and real urine, and no significant matrix effect of the urine samples on the ELISA was found.


Assuntos
Análise de Injeção de Fluxo , Peróxido de Hidrogênio , Compostos de Anilina , Animais , Anticorpos Monoclonais , Benzoatos , Ensaio de Imunoadsorção Enzimática , Camundongos
6.
Appl Opt ; 59(21): 6340-6346, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32749298

RESUMO

We have novelly, to the best of our knowledge, developed the liquid flow microetching method that can treat a single microdisk in a microregion with precise position control for inkjet-printed microdisk lasers. The injection-drain wet etching setup consisted of two microneedles that successfully performed a formation of a fine undercut structure of an inkjet-printed microdisk on a pre-pedestal layer through the individual wet etching process. Then measurement of the undercut structure using scanning electron microscopy and lasing characteristics with whispering gallery modes were carried out to demonstrate performance of the etched microdisks. The measured lasing threshold decreased by half compared with that of the unetched microdisk directly printed on a fluorine-type film. A point to note is that this etching method exhibits an excellent undercut and lasing characteristics even when using a clad pre-pedestal layer having a refractive index higher than that of core microdisks. This technique, combined with inkjet printing, offers a powerful tool for individually designing a microdisk and can help develop novel devices that comprise several inkjet-printed microdisks being evanescently coupled.

7.
Opt Express ; 27(14): 19615-19623, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503718

RESUMO

On-chip microlasers are desirable to meet the different control requirements and unique demands in different application scenarios. In this work, we obtained the on-chip microlaser by printing pixelated CdSe/ZnS colloidal quantum dots (CQDs), incorporating the quantum dot self-assembly mechanism and the external cavity-free configuration. The spectral purity of the microlaser can be significantly improved by slightly blending polymer into the CQD matrix. The quasitoroid profile was gradually changed to microdisks as the polystyrene (PS) concentration increased from 0 wt.% to 10 wt.%. Specially, when the PS solution varied from 0 wt.% to 1 wt.%, the lasing threshold of 1.4 µJ/mm2 was increased up to 14 µJ/mm2, meanwhile the emission wavelength range showed a 25 nm blue-shift approximately. The easy printing technologies and the low-cost polymer blending method employed in the obtained microlasers will further facilitate the development of printing photonics and electronics, especially in the high-performance microlaser displays and high-precision sensors.

8.
Opt Lett ; 44(3): 495-498, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30702662

RESUMO

The on-chip quantum dot (QD) microcavity laser engineered on an annular groove made of fused silica was demonstrated based on the external quasi-cavity configuration. By incorporating an appropriate dose of polymer into QD film, the spectral purity of the lasing spectrum was significantly enhanced. In contrast to the dye microcavity laser embedded on the same trench profile, a QD laser possesses a lifetime that is over 10 times longer. We have introduced a unique two-step quantum gain deposition process that has remarkably reduced the wavelength drifts of laser emissions in an aqueous environment by approximately 400%. The reconfigurable cavity platform in combination with an appropriately engineered quantum gain medium embedded onto it promises to enable photostable chip-scale coherent light sources for various photonic, chemical, and biochemical sensing applications.

9.
Opt Express ; 26(6): 7140-7147, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609400

RESUMO

We developed an ink-jet printing method for fabricating inorganic microdisks at room temperature, which is much lower than the melting point of solid-state inorganic oxide, and have fabricated an organic-inorganic hybrid microdisk laser. Silica was used as the inorganic disk material, and microdisk-shaped aggregates were formed by the ink-jet printing method using a solution in which nanosilica particles were dispersed in propylene glycol monomethylether (PGME) solvent. Then, a microdisk capable of laser oscillation was also prepared by preliminarily adding the laser dye rhodamine 6G to the ink to form a mixed organic material. The structural evaluation of the printed microdisk was first conducted using an optical microscope, a scanning electron microscope (SEM), and an atomic force microscope (AFM). The results of laser oscillation evaluation by optical excitation showed that the printed microdisk sufficiently functions as an optical resonator with a low optical loss. In these evaluations, excellent values such as a surface roughness of 5.83 nm from root mean square (R. M. S.) which is one forth smaller than the particle diameter, and a laser oscillation threshold of 4.76 µJ/mm2 at a wavelength of 601.4 nm were obtained. To the best of our knowledge, this is the first time that an inorganic microdisk has been fabricated at room temperature to realize an organic-inorganic hybrid microdisk laser.

10.
Opt Express ; 26(5): 5800-5809, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529781

RESUMO

We developed chip-scale remote refractive index sensors based on Rhodamine 6G (R6G)-doped polymer micro-ring lasers. The chemical, temperature, and mechanical sturdiness of the fused-silica host guaranteed a flexible deployment of dye-doped polymers for refractive index sensing. The introduction of the dye as gain medium demonstrated the feasibility of remote sensing based on the free-space optics measurement setup. Compared to the R6G-doped TZ-001, the lasing behavior of R6G-doped SU-8 polymer micro-ring laser under an aqueous environment had a narrower spectrum linewidth, producing the minimum detectable refractive index change of 4 × 10-4 RIU. The maximum bulk refractive index sensitivity (BRIS) of 75 nm/RIU was obtained for SU-8 laser-based refractive index sensors. The economical, rapid, and simple realization of polymeric micro-scale whispering-gallery-mode (WGM) laser-based refractive index sensors will further expand pathways of static and dynamic remote environmental, chemical, biological, and bio-chemical sensing.

11.
Opt Express ; 26(1): 233-241, 2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29328300

RESUMO

The ink-jet technique was developed to print the wedge polymer microdisk lasers. The characterization of these lasers was implemented using a free-space optics measurement setup. It was found that disks of larger edge inclination angles have a larger free spectral range (FSR) and a lower resonance wavelength difference between the fundamental transverse electric (TE) and transverse magnetic (TM) whispering-gallery modes (WGMs). This behavior was also confirmed with simulations based on the modified Oxborrow's model with perfectly matched layers (PMLs), which was adopted to accurately calculate the eigenfrequencies, electric field distributions, and quality parameters of modes in the axisymmetric microdisk resonators. Combined with the nearly equivalent quality factor (Q-factor) and finesse factor (F-factor) variations, the correlations between the TE and left adjacent TM modes were theoretically demonstrated. When the edge inclination angle is varied, the distinguishable mode distribution facilitates the precise estimation of a resonance wavelength shift. Therefore, the flexible and efficient nature of wedge polymer microdisk lasers extends their potential applications in precision sensing technology.

12.
ACS Appl Mater Interfaces ; 9(32): 27054-27061, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28771326

RESUMO

By preparing parallelly aligned 1.9-µm-high SiO2 microfluidic channels on an indium tin oxide substrate surface, the solution flow direction during spin-coating was controlled to be parallel to the grating. Using this technique, a pentafluorene-4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) binary solution in chloroform was spin-coated to embed a 40-50 nm-thick 10 wt %-pentafluorene:CBP thin film in the channels. In-plane polarized photoluminescence measurements revealed that the pentafluorene molecules tended to orient along the grating, demonstrating that one-dimensional fluid flow can control the in-plane molecular orientation. Furthermore, the dependences of the photoluminescence anisotropy on the spin speed and substrate material suggest that the velocity of the solution flow and/or its gradient in the vertical direction greatly affects the resulting orientation. This indicates that the mechanism behind the molecular orientation is related to stress such as the shear force. The effect of the solution flow on the molecular orientation was demonstrated even in organic light-emitting diodes (OLEDs). Linearly polarized electroluminescence was obtained by applying the in-plane orientation to OLEDs, and it was found that the dichroic ratio of the electroluminescence orthogonal (x) and parallel (y) to the grating is x/y = 0.75.

13.
Sci Rep ; 7(1): 8405, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814734

RESUMO

The dipole orientation of guest emitters doped into host matrices is usually investigated by angular dependent photoluminescence (PL) measurements, which acquire an out-of-plane PL radiation pattern of the guest-host thin films. The PL radiation patterns generated by these methods are typically analysed by optical simulations, which require expertise to perform and interpret in the simulation. In this paper, we developed a method to calculate an orientational order parameter S without the use of full optical simulations. The PL radiation pattern showed a peak intensity (I sp) in the emission direction tilted by 40°-60° from the normal of the thin film surface plane, indicating an inherent dipole orientation of the emitter. Thus, we directly correlated I sp with S. The S - I sp relation was found to depend on the film thickness (d) and refractive indices of the substrate (n sub) and the organic thin film (n org). Hence, S can be simply calculated with information of I sp, d, n sub, and n org. We applied our method to thermally activated delayed fluorescence materials, which are known to be highly efficient electroluminescence emitters. We evaluated S and found that the error of this method, compared with an optical simulation, was less than 0.05.

14.
Talanta ; 166: 428-432, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28213256

RESUMO

A polydimethylsiloxane (PDMS)-based optical system has been demonstrated. To suppress intense background radiation due to multiple internal scatting in a transparent material, a composite structure of a carbon-PDMS compound and PDMS was proposed. The index matching of the real part of the refractive index can suppress internal scattering, and an absorption of 99-99.7% was attained by using carbon micro particles and carbon nano tubes. The black-PDMS light channel functions as a light filter for straight pass, and an optical density of 5 was obtained by bending the filter.

15.
Sci Rep ; 5: 10623, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26024514

RESUMO

We experimentally demonstrated an extreme ultra-low lasing threshold from full-polymeric fundamental microdisk cavities fabricated by a novel fabrication method, the ink-jet printing method, which is much simpler and easier than previous methods such as lithography. The ink-jet printing method provides additive, room-temperature atmospheric, rapid fabrication with only two steps: (i) stacking cladding pedestal and waveguiding disk spots using the ink-jet technique, and (ii) partial etching of the cladding pedestal envelope. Two kinds of low-viscosity polymers successfully formed microdisks with high surface homogeneity, and one of the polymers doped with LDS798 dye yielded whispering-gallery-mode lasing. The fundamental disks exhibited an extremely ultra-low lasing threshold of 0.33 µJ/mm(2) at a wavelength of 817.3 nm. To the best of our knowledge, this lasing threshold is the lowest threshold obtained among both organic and inorganic fundamental microdisk cavity lasers with a highly confined structure.

16.
Microscopy (Oxf) ; 64(4): 289-96, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25888714

RESUMO

The electrically automated ultrathin sectioning apparatus, which has been developed in recent years, can produce consecutive ultrathin sections with a diamond knife and a gallium ion beam. These newly developed apparatuses, however, have several shortcomings, such as the limited block cutting area, thermal damage to the sample by the focused ion beam and a sample electronic charge. To overcome these faults and for easier scanning electron microscopy three-dimensional fine structural reconstruction, we have developed a new cutting method using a deep ultraviolet laser, which we have named the 'LANTome (Light Ablation Nanotome)'. Using this method, we confirmed the widening of sectioning areas, shortening of the sectioning time, automatic smoothing of rough surfaces, no sample electronic charge and minimal heat effects on the sample tissue, such as thermal denaturation.

17.
Nutrition ; 31(2): 399-405, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25592019

RESUMO

OBJECTIVES: There is an unmet need for agents that can stimulate bone healing. The goal of this study was to evaluate the effects of basic proteins from milk whey (milk basic protein [MBP]) on fracture healing in mice. METHODS: Closed tibial transverse fractures were generated in 6-wk-old male C3 H/HeJ mice given either tap water or MBP-supplemented water for 3, 7, 14, 28, and 56 d after fracture generation. The tibial tissues were analyzed by radiography, µCT, and a three-point bending test. The expression levels of genes associated with bone metabolism were analyzed by real-time reverse transcription-polymerase chain reaction. RESULTS: Quantitative µCT analysis showed that MBP-treated fractured tibiae had a larger hard callus in the sectional area and a larger volume compared with fractured tibiae without MBP treatment. The expression levels of genes associated with chondrogenesis and osteogenesis showed greater increases in fractured tibiae with MBP treatment. Significant increases in the callus mechanical properties were found in MBP-treated tibiae. CONCLUSIONS: MBP supplementation has the potential to improve fracture healing and bone strength in mouse tibiae. MBP could be a potential safe, low-cost, and easily administered nutritional element to prevent secondary fractures in patients with bone fractures.


Assuntos
Suplementos Nutricionais , Consolidação da Fratura/efeitos dos fármacos , Proteínas do Leite/farmacologia , Animais , Densidade Óssea/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C3H , Osteogênese/efeitos dos fármacos , Tíbia/efeitos dos fármacos , Tíbia/metabolismo , Fraturas da Tíbia/tratamento farmacológico
18.
Opt Express ; 20(14): 14938-44, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22772188

RESUMO

Novel type of optical fiber sensor was proposed and demonstrated. The print-like fabrication technique fabricates multiple distributed feedback solid state dye lasers on a polymeric optical fiber (POF) with tapered coupling. This multi-active-sidecore structure was easily fabricated and provides multiple functions. Mounting the lasers on the same point of a multimode POF demonstrated a bending radius sensitivity of 20 m without any supports. Two axis directional sensing without cross talk was also confirmed. A more complicated mounting formation can demonstrate a twisted POF. The temperature property of the sensor was also studied, and elimination of the temperature influence was experimentally attained.

19.
Opt Express ; 20(4): 4690-6, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22418226

RESUMO

A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.

20.
Opt Express ; 18(21): 22080-9, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20941109

RESUMO

Pyrromethene dyes doped polymeric channeled waveguide lasers with permanent DFB structures were fabricated via a novel pen-drawing technique with the patterned polydimethylsiloxane (PDMS) chips fabricated through a casting process as the substrates. With the high resolution dispensers, dye doped high viscosity pre-polymers were written into the PDMS grooves and the cross-section of the channeled waveguides could be controlled by both the polymer composition and the pen-drawing parameters. Highly stable laser output with 4.8 × 10(6) pulses of laser lifetime at 500 Hz of pump repetition rate has been obtained, which is suggested to be among one of the best results of pyrromethene 567 (PM567) up to date.


Assuntos
Corantes/química , Lasers , Elétrons , Desenho de Equipamento , Teste de Materiais , Óptica e Fotônica , Polímeros/química , Porfobilinogênio/química , Silicones/química , Compostos de Estanho/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA