Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 32(22): 4881-4889.e5, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36306789

RESUMO

Many organisms living along the coastlines synchronize their reproduction with the lunar cycle. At the time of spring tide, thousands of grass puffers (Takifugu alboplumbeus) aggregate and vigorously tremble their bodies at the water's edge to spawn. To understand the mechanisms underlying this spectacular semilunar beach spawning, we collected the hypothalamus and pituitary from male grass puffers every week for 2 months. RNA sequencing (RNA-seq) analysis identified 125 semilunar genes, including genes crucial for reproduction (e.g., gonadotropin-releasing hormone 1 [gnrh1], luteinizing hormone ß subunit [lhb]) and receptors for pheromone prostaglandin E (PGE). PGE2 is secreted into the seawater during the spawning, and its administration activates olfactory sensory neurons and triggers trembling behavior of surrounding individuals. These results suggest that PGE2 synchronizes lunar-regulated beach-spawning behavior in grass puffers. To further explore the mechanism that regulates the lunar-synchronized transcription of semilunar genes, we searched for semilunar transcription factors. Spatial transcriptomics and multiplex fluorescent in situ hybridization showed co-localization of the semilunar transcription factor CCAAT/enhancer-binding protein δ (cebpd) and gnrh1, and cebpd induced the promoter activity of gnrh1. Taken together, our study demonstrates semilunar genes that mediate lunar-synchronized beach-spawning behavior. VIDEO ABSTRACT.


Assuntos
Lua , Takifugu , Humanos , Animais , Masculino , Takifugu/genética , Takifugu/metabolismo , Hibridização in Situ Fluorescente , Reprodução/fisiologia , Prostaglandinas E/metabolismo , Prostaglandinas/metabolismo
2.
Sci Rep ; 11(1): 1843, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469071

RESUMO

At high latitudes, approximately 10% of people suffer from depression during the winter season, a phenomenon known as seasonal affective disorder (SAD). Shortened photoperiod and/or light intensity during winter season are risk factors for SAD, and bright light therapy is an effective treatment. Interestingly, reduced retinal photosensitivity along with the mood is observed in SAD patients in winter. However, the molecular basis underlying seasonal changes in retinal photosensitivity remains unclear, and pharmacological intervention is required. Here we show photoperiodic regulation of dopamine signaling and improvement of short day-attenuated photosensitivity by its pharmacological intervention in mice. Electroretinograms revealed dynamic seasonal changes in retinal photosensitivity. Transcriptome analysis identified short day-mediated suppression of the Th gene, which encodes tyrosine hydroxylase, a rate-limiting enzyme for dopamine biosynthesis. Furthermore, pharmacological intervention in dopamine signaling through activation of the cAMP signaling pathway rescued short day-attenuated photosensitivity, whereas dopamine receptor antagonists decreased photosensitivity under long-day conditions. Our results reveal molecular basis of seasonal changes in retinal photosensitivity in mammals. In addition, our findings provide important insights into the pathogenesis of SAD and offer potential therapeutic interventions.


Assuntos
Dopamina/metabolismo , Luz , Fotoperíodo , Retina/fisiologia , Estações do Ano , Transdução de Sinais , Animais , Eletrorretinografia , Regulação da Expressão Gênica/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Retina/diagnóstico por imagem , Retina/metabolismo , Retina/efeitos da radiação , Transtorno Afetivo Sazonal/etiologia , Transtorno Afetivo Sazonal/genética , Transtorno Afetivo Sazonal/fisiopatologia , Temperatura
3.
Endocrinology ; 161(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738138

RESUMO

Organisms that inhabit the temperate zone exhibit various seasonal adaptive behaviors, including reproduction, hibernation, molting, and migration. Day length, known as photoperiod, is the most noise-free and widely used environmental cue that enables animals to anticipate the oncoming seasons and adapt their physiologies accordingly. Although less clear, some human traits also exhibit seasonality, such as birthrate, mood, cognitive brain responses, and various diseases. However, the molecular basis for human seasonality is poorly understood. Herein, we first review the underlying mechanisms of seasonal adaptive strategies of animals, including seasonal reproduction and stress responses during the breeding season. We then briefly summarize our recent discovery of signaling pathways involved in the winter depression-like phenotype in medaka fish. We believe that exploring the regulation of seasonal traits in animal models will provide insight into human seasonality and aid in the understanding of human diseases such as seasonal affective disorder (SAD).


Assuntos
Adaptação Fisiológica , Afeto/efeitos da radiação , Hormônios/fisiologia , Luz , Reprodução/efeitos da radiação , Estações do Ano , Adaptação Fisiológica/fisiologia , Adaptação Fisiológica/efeitos da radiação , Afeto/fisiologia , Animais , Humanos , Fotoperíodo , Reprodução/fisiologia , Fatores de Risco , Transtorno Afetivo Sazonal/epidemiologia , Transtorno Afetivo Sazonal/etiologia
4.
Proc Natl Acad Sci U S A ; 117(17): 9594-9603, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32277035

RESUMO

Seasonal changes in the environment lead to depression-like behaviors in humans and animals. The underlying mechanisms, however, are unknown. We observed decreased sociability and increased anxiety-like behavior in medaka fish exposed to winter-like conditions. Whole brain metabolomic analysis revealed seasonal changes in 68 metabolites, including neurotransmitters and antioxidants associated with depression. Transcriptome analysis identified 3,306 differentially expressed transcripts, including inflammatory markers, melanopsins, and circadian clock genes. Further analyses revealed seasonal changes in multiple signaling pathways implicated in depression, including the nuclear factor erythroid-derived 2-like 2 (NRF2) antioxidant pathway. A broad-spectrum chemical screen revealed that celastrol (a traditional Chinese medicine) uniquely reversed winter behavior. NRF2 is a celastrol target expressed in the habenula (HB), known to play a critical role in the pathophysiology of depression. Another NRF2 chemical activator phenocopied these effects, and an NRF2 mutant showed decreased sociability. Our study provides important insights into winter depression and offers potential therapeutic targets involving NRF2.


Assuntos
Comportamento Animal/fisiologia , Depressão/metabolismo , Regulação da Expressão Gênica/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Oryzias/fisiologia , Estações do Ano , Animais , Dimetil Sulfóxido/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma , Mutação , Fator 2 Relacionado a NF-E2/genética
5.
Nat Ecol Evol ; 3(5): 845-852, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962562

RESUMO

To cope with seasonal environmental changes, animals adapt their physiology and behaviour in response to photoperiod. However, the molecular mechanisms underlying these adaptive changes are not completely understood. Here, using genome-wide expression analysis, we show that an uncharacterized long noncoding RNA (lncRNA), LDAIR, is strongly regulated by photoperiod in Japanese medaka fish (Oryzias latipes). Numerous transcripts and signalling pathways are activated during the transition from short- to long-day conditions; however, LDAIR is one of the first genes to be induced and its expression shows a robust daily rhythm under long-day conditions. Transcriptome analysis of LDAIR knockout fish reveals that the LDAIR locus regulates a gene neighbourhood, including corticotropin releasing hormone receptor 2, which is involved in the stress response. Behavioural analysis of LDAIR knockout fish demonstrates that LDAIR affects self-protective behaviours under long-day conditions. Therefore, we propose that photoperiodic regulation of corticotropin releasing hormone receptor 2 by LDAIR modulates adaptive behaviours to seasonal environmental changes.


Assuntos
RNA Longo não Codificante , Animais , Cruzamento , Perfilação da Expressão Gênica , Fotoperíodo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA