Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pathol Int ; 74(5): 262-273, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501371

RESUMO

Bladder cancer is one of the most common cancers among men worldwide. Although multiple genomic mutations and epigenetic alterations have been identified, an efficacious molecularly targeted therapy has yet to be established. Therefore, a novel approach is anticipated. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type I transmembrane glycoprotein that is highly expressed in various cancers. In this study, we evaluated bladder cancer patient samples and found that GPNMB protein abundance is associated with high-grade tumors, and both univariate and multivariate analyses showed that GPNMB is a prognostic factor. Furthermore, the prognosis of patients with high GPNMB levels was significantly poorer in those with nonmuscle invasive bladder cancer (NMIBC) than in those with muscle invasive bladder cancer (MIBC). We then demonstrated that knockdown of GPNMB in MIBC cell lines with high GPNMB inhibits cellular migration and invasion, whereas overexpression of GPNMB further enhances cellular migration and invasion in MIBC cell lines with originally low GPNMB. Therefore, we propose that GPNMB is one of multiple driver molecules in the acquisition of cellular migratory and invasive potential in bladder cancers. Moreover, we revealed that the tyrosine residue in the hemi-immunoreceptor tyrosine-based activation motif (hemITAM) is required for GPNMB-induced cellular motility.


Assuntos
Movimento Celular , Glicoproteínas de Membrana , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Glicoproteínas de Membrana/metabolismo , Masculino , Linhagem Celular Tumoral , Feminino , Idoso , Pessoa de Meia-Idade , Prognóstico , Invasividade Neoplásica/patologia , Biomarcadores Tumorais/metabolismo
2.
Cancer Sci ; 114(10): 3972-3983, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37607779

RESUMO

Carcinoma cells possess high proliferative and invasive potentials and exhibit a resilience against stresses, metabolic disorder, and therapeutic efforts. These properties are mainly acquired by genetic alterations including driver gene mutations. However, the detailed molecular mechanisms have not been fully elucidated. Here, we provide a novel mechanism connecting oncogenic signaling and the tumorigenic properties by a transforming growth factor-ß1-stimulated clone 22 (TSC-22) family protein, THG-1 (also called as TSC22D4). THG-1 is localized at the basal layer of normal squamous epithelium and overexpressed in squamous cell carcinomas (SCCs). THG-1 knockdown suppressed SCC cell proliferation, invasiveness, and xenograft tumor formation. In contrast, THG-1 overexpression promoted the EGF-induced proliferation and stratified epithelium formation. Furthermore, THG-1 is phosphorylated by the receptor tyrosine kinase (RTK)-RAS-ERK pathway, which promoted the oncogene-mediated tumorigenesis. Moreover, THG-1 involves in the alternative splicing of CD44 variants, a regulator of invasiveness, stemness, and oxidative stress resistance under the RTK pathway. These findings highlight the pivotal roles of THG-1 as a novel effector of SCC tumorigenesis, and the detection of THG-1 phosphorylation by our established specific antibody could contribute to cancer diagnosis and therapy.


Assuntos
Carcinoma de Células Escamosas , Humanos , Carcinogênese/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/genética , Oncogenes/genética , Fosforilação , Fatores de Transcrição/genética , Animais
3.
Cancer Sci ; 113(9): 3244-3254, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35365934

RESUMO

Laryngeal squamous cell carcinoma (LSCC), although one of the most common head and neck cancers, has a static or slightly decreased survival rate because of difficulties in early diagnosis, lack of effective molecular targeting therapy, and severe dysfunction after radical surgical treatments. Therefore, a novel therapeutic target is crucial to increase treatment efficacy and survival rates in these patients. Glycoprotein NMB (GPNMB), whose role in LSCC remains elusive, is a type 1 transmembrane protein involved in malignant progression of various cancers, and its high expression is thought to be a poor prognostic factor. In this study, we showed that GPNMB expression levels in LSCC samples are significantly higher than those in normal tissues, and GPNMB expression is observed mostly in growth-arrested cancer cells. Furthermore, knockdown of GPNMB reduces monolayer cellular proliferation, cellular migration, and tumorigenic growth, while GPNMB protein displays an inverse relationship with Ki-67 levels. Therefore, we conclude that GPNMB may be an attractive target for future LSCC therapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , MicroRNAs , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/metabolismo , Humanos , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Regiões Promotoras Genéticas , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fatores de Transcrição/metabolismo
4.
Mol Oncol ; 16(12): 2330-2354, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35348275

RESUMO

Transforming growth factor ß (TGFß) induces epithelial-mesenchymal transition (EMT), which correlates with stemness and invasiveness. Mesenchymal-epithelial transition (MET) is induced by TGFß withdrawal and correlates with metastatic colonization. Whether TGFß promotes stemness and invasiveness simultaneously via EMT remains unclear. We established a breast cancer cell model expressing red fluorescent protein (RFP) under the E-cadherin promoter. In 2D cultures, TGFß induced EMT, generating RFPlow cells with a mesenchymal transcriptome, and regained RFP, with an epithelial transcriptome, after MET induced by TGFß withdrawal. RFPlow cells generated robust mammospheres, with epithelio-mesenchymal cell surface features. Mammospheres that were forced to adhere generated migratory cells, devoid of RFP, a phenotype which was inhibited by a TGFß receptor kinase inhibitor. Further stimulation of RFPlow mammospheres with TGFß suppressed the generation of motile cells, but enhanced mammosphere growth. Accordingly, mammary fat-pad-transplanted mammospheres, in the absence of exogenous TGFß treatment, established lung metastases with evident MET (RFPhigh cells). In contrast, TGFß-treated mammospheres revealed high tumour-initiating capacity, but limited metastatic potential. Thus, the biological context of partial EMT and MET allows TGFß to differentiate between pro-stemness and pro-invasive phenotypes.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Linhagem Celular Tumoral , Humanos , Fenótipo , Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador beta/metabolismo
5.
Cancer Sci ; 112(10): 4187-4197, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34327762

RESUMO

Breast cancer is the most common cancer among women. Glycoprotein non-metastatic melanoma protein B (GPNMB), a type I transmembrane protein that is highly expressed in many cancers, including breast cancer, has been shown to be a prognostic factor. We previously reported that GPNMB overexpression confers tumorigenic potential, as evidenced by invasive tumor growth in vivo, sphere formation, and cellular migration and invasion to non-tumorigenic mammary epithelial cells. In this study, we focused on the serine (S) residue in the intracellular domain of GPNMB (S530 in human isoform b and S546 in mouse), which is predicted to be a phosphorylation site. To investigate the roles of this serine residue, we made an antibody specific for S530-phosphorylated human GPNMB and a point mutant in which S530 is replaced by an alanine (A) residue, GPNMB(SA). Established GPNMB(SA) overexpressing cells showed a significant reduction in sphere formation in vitro and tumor growth in vivo as a result of decreased stemness-related gene expression compared to that in GPNMB(WT)-expressing cells. In addition, GPNMB(SA) impaired GPNMB-mediated cellular migration. Furthermore, we found that tyrosine kinase receptor signaling triggered by epidermal growth factor or fibroblast growth factor 2 induces the serine phosphorylation of GPNMB through activation of downstream oncoproteins RAS and RAF.


Assuntos
Glicoproteínas de Membrana/fisiologia , Serina/metabolismo , Animais , Especificidade de Anticorpos , Linhagem Celular Tumoral , Movimento Celular/genética , Fator de Crescimento Epidérmico/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Células MCF-7 , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Mutação Puntual , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Quinases raf/metabolismo , Proteínas ras/metabolismo
6.
Genes Cells ; 26(5): 336-343, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33638919

RESUMO

Three-dimensional (3D) culturing mimics the heterogeneous cellular conditions of the in vivo tumor microenvironment compared to 2D monolayer-cultured cells and 3D cultures of established cancer cell lines (sphere culture) or patient-derived cancer cells (organoid culture) are frequently used for cancer research or drug screening and evaluation. To establish more cost and time-efficient 3D culture methods for cancer cell lines, we supplemented sphere culture medium with polyvinyl alcohol (PVA) and found that 3D sphere cultures of breast and pancreatic cancer cell lines were significantly increased. Mechanistically, we found that PVA prevented cell death and promoted cellular proliferation while maintaining levels of stemness-related gene expression. Furthermore, we showed that polyvinyl formal resin (PVF) 3D scaffolds made by cross-linked PVA can function in serum-free, long-term 3D cultures to support maintenance of sphere- or tumor-like cell masses for diverse cancer cell types. Taken together, we demonstrate the effectiveness of PVA and PVF in human cancer cell line culture protocols.


Assuntos
Apoptose/efeitos dos fármacos , Álcool de Polivinil/farmacologia , Esferoides Celulares/citologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Esferoides Celulares/efeitos dos fármacos
7.
Cancer Sci ; 110(7): 2237-2246, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31127873

RESUMO

Glycoprotein NMB (GPNMB) is highly expressed in many types of malignant tumors and thought to be a poor prognostic factor in those cancers, including breast cancer. Glycoprotein NMB is a type IA transmembrane protein that has a long extracellular domain (ECD) and a short intracellular domain (ICD). In general, the ECD of a protein is involved in protein-protein or protein-carbohydrate interactions, whereas the ICD is important for intracellular signaling. We previously reported that GPNMB contributes to the initiation and malignant progression of breast cancer through the hemi-immunoreceptor tyrosine-based activation motif (hemITAM) in its ICD. Furthermore, we showed that the tyrosine residue in hemITAM is involved in induction of the stem-like properties of breast cancer cells. However, the contribution of the ECD to its tumorigenic function has yet to be fully elucidated. In this study, we focused on the region, the so-called kringle-like domain (KLD), that is conserved among species, and made a deletion mutant, GPNMB(ΔKLD). Enhanced expression of WT GPNMB induced sphere and tumor formation in breast epithelial cells; in contrast, GPNMB(ΔKLD) lacked these activities without affecting its molecular properties, such as subcellular localization, Src-induced tyrosine phosphorylation at least in overexpression experiments, and homo-oligomerization. Additionally, GPNMB(ΔKLD) lost its cell migration promoting activity, even though it reduced E-cadherin expression. Although the interaction partner binding to KLD has not yet been identified, we found that the KLD of GPNMB plays an important role in its tumorigenic potential.


Assuntos
Neoplasias da Mama/patologia , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Mutação , Sequência de Aminoácidos , Animais , Antígenos CD/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Sequência Conservada , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Kringles , Glicoproteínas de Membrana/genética , Camundongos , Transplante de Neoplasias
8.
Cancer Res ; 78(22): 6424-6435, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30224376

RESUMO

Glycoprotein nmb (GPNMB) is a type I transmembrane protein that contributes to the initiation and malignant progression of breast cancer through induction of epithelial-mesenchymal transition (EMT). Although it is known that EMT is associated with not only cancer invasion but also acquisition of cancer stem cell (CSC) properties, the function of GPNMB in this acquisition of CSC properties has yet to be elucidated. To address this issue, we utilized a three-dimensional (3D) sphere culture method to examine the correlation between GPNMB and CSC properties in breast cancer cells. Three-dimensional sphere cultures induced higher expression of CSC genes and EMT-inducing transcription factor (EMT-TF) genes than the 2D monolayer cultures. Three-dimensional culture also induced cell surface expression of GPNMB on limited numbers of cells in the spheres, whereas the 2D cultures did not. Therefore, we isolated cell surface-GPNMBhigh and -GPNMBlow cells from the spheres. Cell surface-GPNMBhigh cells expressed high levels of CSC genes and EMT-TF genes, had significantly higher sphere-forming frequencies than the cell surface-GPNMBlow cells, and showed no detectable levels of proliferation marker genes. Similar results were obtained from transplanted breast tumors. Furthermore, wild-type GPNMB, but not mutant GPNMB (YF), which lacks tumorigenic activity, induced CSC-like properties in breast epithelial cells. These findings suggest that GPNMB is exposed on the surface of dormant breast cancer cells and its activity contributes to the acquisition of stem cell-like properties.Significance: These findings suggest that cell surface expression of GPNMB could serve as a marker and promising therapeutic target of breast cancer cells with stem cell-like properties. Cancer Res; 78(22); 6424-35. ©2018 AACR.


Assuntos
Neoplasias da Mama/metabolismo , Transição Epitelial-Mesenquimal , Glicoproteínas de Membrana/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Separação Celular , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Interferência de RNA , Esferoides Celulares , Fatores de Transcrição/metabolismo , Tirosina/química
9.
Oncotarget ; 9(99): 37289-37290, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30647869
10.
Sci Signal ; 10(474)2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28400538

RESUMO

Triple-negative breast cancer (TNBC) is particularly aggressive and difficult to treat. For example, the transforming growth factor-ß (TGF-ß) pathway is implicated in TNBC progression and metastasis, but its opposing role in tumor suppression in healthy tissues and early-stage lesions makes it a challenging target. Therefore, additional molecular characterization of TNBC may lead to improved patient prognosis by informing the development and optimum use of targeted therapies. We found that musculoaponeurotic fibrosarcoma (MAF) oncogene family protein K (MAFK), a member of the small MAF family of transcription factors that are induced by the TGF-ß pathway, was abundant in human TNBC and aggressive mouse mammary tumor cell lines. MAFK promoted tumorigenic growth and metastasis by 4T1 cells when implanted subcutaneously in mice. Overexpression of MAFK in mouse breast epithelial NMuMG cells induced epithelial-mesenchymal transition (EMT) phenotypes and promoted tumor formation and invasion in mice. MAFK induced the expression of the gene encoding the transmembrane glycoprotein nmb (GPNMB). Similar to MAFK, GPNMB overexpression in NMuMG cells induced EMT, tumor formation, and invasion, in mice, whereas knockdown of MAFK in tumor cells before implantation suppressed tumor growth and progression. MAFK and GPNMB expression correlated with poor prognosis in TNBC patients. These findings suggest that MAFK and its target gene GPNMB play important roles in the malignant progression of TNBC cells, offering potentially new therapeutic targets for TNBC patients.


Assuntos
Transição Epitelial-Mesenquimal/genética , Fator de Transcrição MafK/genética , Glicoproteínas de Membrana/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Immunoblotting , Células MCF-7 , Fator de Transcrição MafK/metabolismo , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Invasividade Neoplásica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral/genética
11.
PLoS One ; 11(2): e0150010, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26901059

RESUMO

The MAF family transcription factors are homologs of v-Maf, the oncogenic component of the avian retrovirus AS42. They are subdivided into 2 groups, small and large MAF proteins, according to their structure, function, and molecular size. MAFK is a member of the small MAF family and acts as a dominant negative form of large MAFs. In previous research we generated transgenic mice that overexpress MAFK in order to suppress the function of large MAF proteins in pancreatic ß-cells. These mice developed hyperglycemia in adulthood due to impairment of glucose-stimulated insulin secretion. The aim of the current study is to examine the effects of ß-cell-specific Mafk overexpression in endocrine cell development. The developing islets of Mafk-transgenic embryos appeared to be disorganized with an inversion of total numbers of insulin+ and glucagon+ cells due to reduced ß-cell proliferation. Gene expression analysis by quantitative RT-PCR revealed decreased levels of ß-cell-related genes whose expressions are known to be controlled by large MAF proteins. Additionally, these changes were accompanied with a significant increase in key ß-cell transcription factors likely due to compensatory mechanisms that might have been activated in response to the ß-cell loss. Finally, microarray comparison of gene expression profiles between wild-type and transgenic pancreata revealed alteration of some uncharacterized genes including Pcbd1, Fam132a, Cryba2, and Npy, which might play important roles during pancreatic endocrine development. Taken together, these results suggest that Mafk overexpression impairs endocrine development through a regulation of numerous ß-cell-related genes. The microarray analysis provided a unique data set of differentially expressed genes that might contribute to a better understanding of the molecular basis that governs the development and function of endocrine pancreas.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/patologia , Fatores de Transcrição Maf Maior/genética , Adipocinas/metabolismo , Animais , Feminino , Glucagon/metabolismo , Hidroliases/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Maf Maior/metabolismo , Masculino , Camundongos , Camundongos Transgênicos
12.
Methods Mol Biol ; 1344: 147-81, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26520123

RESUMO

In recent years, the importance of the cell biological process of epithelial-mesenchymal transition (EMT) has been established via an exponentially growing number of reports. EMT has been documented during embryonic development, tissue fibrosis, and cancer progression in vitro, in animal models in vivo and in human specimens. EMT relates to many molecular and cellular alterations that occur when epithelial cells undergo a switch in differentiation that generates mesenchymal-like cells with newly acquired migratory and invasive properties. In addition, EMT relates to a nuclear reprogramming similar to the one occurring in the generation of induced pluripotent stem cells. Via such a process, EMT is gradually established to promote the generation and maintenance of adult tissue stem cells which under disease states such as cancer, are known as cancer stem cells. EMT is induced by developmental growth factors, oncogenes, radiation, and hypoxia. A prominent growth factor that causes EMT is transforming growth factor ß (TGF-ß).A series of molecular and cellular techniques can be applied to define and characterize the state of EMT in diverse biological samples. These methods range from DNA and RNA-based techniques that measure the expression of key EMT regulators and markers of epithelial or mesenchymal differentiation to functional assays of cell mobility, invasiveness and in vitro stemness. This chapter focuses on EMT induced by TGF-ß and provides authoritative protocols and relevant reagents and citations of key publications aiming at assisting newcomers that enter this prolific area of biomedical sciences, and offering a useful reference tool to pioneers and aficionados of the field.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Fator de Crescimento Transformador beta/farmacologia , Animais , Técnicas de Cultura de Células , Linhagem Celular , Colágeno , Combinação de Medicamentos , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Técnicas In Vitro , Laminina , Camundongos , Proteoglicanas , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma , Cicatrização
13.
J Biol Chem ; 288(28): 20658-67, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23737527

RESUMO

Transforming growth factor-ß (TGF-ß) has multiple functions in embryogenesis, adult homeostasis, tissue repair, and development of cancer. Here, we report that TGF-ß suppresses the transcriptional activation of the heme oxygenase-1 (HO-1) gene, which is implicated in protection against oxidative injury and lung carcinogenesis. HO-1 is a target of the oxidative stress-responsive transcription factor Nrf2. TGF-ß did not affect the stabilization or nuclear accumulation of Nrf2 after stimulation with electrophiles. Instead, TGF-ß induced expression of transcription factors MafK and Bach1. Enhanced expression of either MafK or Bach1 was enough to suppress the electrophile-inducible expression of HO-1 even in the presence of accumulated Nrf2 in the nucleus. Knockdown of MafK and Bach1 by siRNA abolished TGF-ß-dependent suppression of HO-1. Furthermore, chromatin immunoprecipitation assays revealed that Nrf2 substitutes for Bach1 at the antioxidant response elements (E1 and E2), which are responsible for the induction of HO-1 in response to oxidative stress. On the other hand, pretreatment with TGF-ß suppressed binding of Nrf2 to both E1 and E2 but marginally increased the binding of MafK to E2 together with Smads. As TGF-ß is activated after tissue injury and in the process of cancer development, these findings suggest a novel mechanism by which damaged tissue becomes vulnerable to oxidative stress and xenobiotics.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Fator de Transcrição MafK/genética , Fator de Crescimento Transformador beta/farmacologia , Antioxidantes/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem Celular , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Células HEK293 , Heme Oxigenase-1/metabolismo , Humanos , Hidroquinonas/farmacologia , Immunoblotting , Fator de Transcrição MafK/metabolismo , Microscopia de Fluorescência , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , Elementos de Resposta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Smad/genética , Proteínas Smad/metabolismo
14.
FEBS Lett ; 582(2): 341-5, 2008 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18158922

RESUMO

Podoplanin/aggrus is increased in tumors and its expression was associated with tumor malignancy. Podoplanin on cancer cells serves as a platelet-aggregating factor, which is associated with the metastatic potential. However, regulators of podoplanin remain to be determined. Transforming growth factor-beta (TGF-beta) regulates many physiological events, including tumorigenesis. Here, we found that TGF-beta induced podoplanin in human fibrosarcoma HT1080 cells and enhanced the platelet-aggregating-ability of HT1080. TGF-beta type I receptor inhibitor (SB431542) and short hairpin RNAs for Smad4 inhibited the podoplanin induction by TGF-beta. These results suggest that TGF-beta is a physiological regulator of podoplanin in tumor cells.


Assuntos
Fibrossarcoma/metabolismo , Glicoproteínas de Membrana/biossíntese , Fator de Crescimento Transformador beta/farmacologia , Sequência de Bases , Linhagem Celular , Primers do DNA , Fibrossarcoma/patologia , Citometria de Fluxo , Humanos , Agregação Plaquetária , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Smad4/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA