Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
MAbs ; 14(1): 2052228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35323099

RESUMO

Transgenic human monoclonal antibodies derived from humanized mice against different epitopes of the Middle East respiratory syndrome coronavirus (MERS-CoV), and chimeric llama-human bispecific heavy chain-only antibodies targeting the Rift Valley fever virus (RVFV), were produced using a CHO-based transient expression system. Two lead candidates were assessed for each model virus before selecting and progressing one lead molecule. MERS-7.7G6 was used as the model antibody to demonstrate batch-to-batch process consistency and, together with RVFV-107-104, were scaled up to 200 L. Consistent expression titers were obtained in different batches at a 5 L scale for MERS-7.7G6. Although lower expression levels were observed for MERS-7.7G6 and RVFV-107-104 during scale up to 200 L, product quality attributes were consistent at different scales and in different batches. In addition to this, peptide mapping data suggested no detectable sequence variants for any of these candidates. Functional assays demonstrated comparable neutralizing activity for MERS-7.7G6 and RVFV-107-104 generated at different production scales. Similarly, MERS-7.7G6 batches generated at different scales were shown to provide comparable protection in mouse models. Our study demonstrates that a CHO-based transient expression process is capable of generating consistent product quality at different production scales and thereby supports the potential of using transient gene expression to accelerate the manufacturing of early clinical material.


Assuntos
Anticorpos Neutralizantes , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Anticorpos Monoclonais/genética , Anticorpos Antivirais , Epitopos , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética
2.
Biologicals ; 74: 10-15, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34736782

RESUMO

The Zoonoses Anticipation and Preparedness Initiative (ZAPI) was set up to prepare for future outbreaks and to develop and implement new technologies to accelerate development and manufacturing of vaccines and monoclonal antibodies. To be able to achieve surge capacity, an easy deployment and production at multiple sites is needed. This requires a straightforward manufacturing system with a limited number of steps in upstream and downstream processes, a minimum number of in vitro Quality Control assays, and robust and consistent platforms. Three viruses were selected as prototypes: Middle East Respiratory Syndrome (MERS) coronavirus, Rift Valley fever virus, and Schmallenberg virus. Selected antibodies against the viral surface antigens were manufactured by transient gene expression in Chinese Hamster Ovary (CHO) cells, scaling up to 200 L. For vaccine production, viral antigens were fused to multimeric protein scaffold particles using the SpyCatcher/SpyTag system. In vivo models demonstrated the efficacy of both antibodies and vaccines. The final step in speeding up vaccine (and antibody) development is the regulatory appraisal of new platform technologies. Towards this end, within ZAPI, a Platform Master File (PfMF) was developed, as part of a licensing dossier, to facilitate and accelerate the scientific assessment by avoiding repeated discussion of already accepted platforms. The veterinary PfMF was accepted, whereas the human PfMF is currently under review by the European Medicines Agency, aiming for publication of the guideline by January 2022.


Assuntos
Infecções por Coronavirus , Vacinas Virais , Zoonoses , Animais , Anticorpos Antivirais , Antígenos Virais , Células CHO , Congressos como Assunto , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Cricetinae , Cricetulus , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio , Vírus da Febre do Vale do Rift , Zoonoses/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA