Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Nat Commun ; 15(1): 8390, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333498

RESUMO

The peptide hormone glucagon is a fundamental metabolic regulator that is also being considered as a pharmacotherapeutic option for obesity and type 2 diabetes. Despite this, we know very little regarding how glucagon exerts its pleiotropic metabolic actions. Given that the liver is a chief site of action, we performed in situ time-resolved liver phosphoproteomics to reveal glucagon signaling nodes. Through pathway analysis of the thousands of phosphopeptides identified, we reveal "membrane trafficking" as a dominant signature with the vesicle trafficking protein SEC22 Homolog B (SEC22B) S137 phosphorylation being a top hit. Hepatocyte-specific loss- and gain-of-function experiments reveal that SEC22B was a key regulator of glycogen, lipid and amino acid metabolism, with SEC22B-S137 phosphorylation playing a major role in glucagon action. Mechanistically, we identify several protein binding partners of SEC22B affected by glucagon, some of which were differentially enriched with SEC22B-S137 phosphorylation. In summary, we demonstrate that phosphorylation of SEC22B is a hepatocellular signaling node mediating the metabolic actions of glucagon and provide a rich resource for future investigations on the biology of glucagon action.


Assuntos
Glucagon , Hepatócitos , Proteômica , Transdução de Sinais , Animais , Glucagon/metabolismo , Fosforilação , Proteômica/métodos , Hepatócitos/metabolismo , Camundongos , Fígado/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Fosfoproteínas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Humanos , Metabolismo dos Lipídeos , Glicogênio/metabolismo
2.
Int J Neonatal Screen ; 10(3)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39311364

RESUMO

Driven by technological innovations, newborn screening (NBS) panels have been expanded and the development of genomic NBS pilot programs is rapidly progressing. Decisions on disease selection for NBS are still based on the Wilson and Jungner (WJ) criteria published in 1968. Despite this uniform reference, interpretation of the WJ criteria and actual disease selection for NBS programs are highly variable. A systematic literature search [PubMED search "Wilson" AND "Jungner"; last search 16.07.22] was performed to evaluate the applicability of the WJ criteria for current and future NBS programs and the need for adaptation. By at least two reviewers, 105 publications (systematic literature search, N = 77; manual search, N = 28) were screened for relevant content and, finally, 38 publications were evaluated. Limited by the study design of qualitative text analysis, no statistical evaluation was performed, but a structured collection of reported aspects of criticism and proposed improvements was instead collated. This revealed a set of general limitations of the WJ criteria, such as imprecise terminology, lack of measurability and objectivity, missing pediatric focus, and absent guidance on program management. Furthermore, it unraveled specific aspects of criticism on clinical, diagnostic, therapeutic, and economical aspects. A major obstacle was found to be the incompletely understood natural history and phenotypic diversity of rare diseases prior to NBS implementation, resulting in uncertainty about case definition, risk stratification, and indications for treatment. This gap could be closed through the systematic collection and evaluation of real-world evidence on the quality, safety, and (cost-)effectiveness of NBS, as well as the long-term benefits experienced by screened individuals. An integrated NBS public health program that is designed to continuously learn would fulfil these requirements, and a multi-dimensional framework for future NBS programs integrating medical, ethical, legal, and societal perspectives is overdue.

3.
Cardiovasc Diabetol ; 23(1): 299, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143579

RESUMO

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is associated with systemic inflammation, obesity, metabolic syndrome, and gut microbiome changes. Increased trimethylamine-N-oxide (TMAO) levels are predictive for mortality in HFpEF. The TMAO precursor trimethylamine (TMA) is synthesized by the intestinal microbiome, crosses the intestinal barrier and is metabolized to TMAO by hepatic flavin-containing monooxygenases (FMO). The intricate interactions of microbiome alterations and TMAO in relation to HFpEF manifestation and progression are analyzed here. METHODS: Healthy lean (L-ZSF1, n = 12) and obese ZSF1 rats with HFpEF (O-ZSF1, n = 12) were studied. HFpEF was confirmed by transthoracic echocardiography, invasive hemodynamic measurements, and detection of N-terminal pro-brain natriuretic peptide (NT-proBNP). TMAO, carnitine, symmetric dimethylarginine (SDMA), and amino acids were measured using mass-spectrometry. The intestinal epithelial barrier was analyzed by immunohistochemistry, in-vitro impedance measurements and determination of plasma lipopolysaccharide via ELISA. Hepatic FMO3 quantity was determined by Western blot. The fecal microbiome at the age of 8, 13 and 20 weeks was assessed using 16s rRNA amplicon sequencing. RESULTS: Increased levels of TMAO (+ 54%), carnitine (+ 46%) and the cardiac stress marker NT-proBNP (+ 25%) as well as a pronounced amino acid imbalance were observed in obese rats with HFpEF. SDMA levels in O-ZSF1 were comparable to L-ZSF1, indicating stable kidney function. Anatomy and zonula occludens protein density in the intestinal epithelium remained unchanged, but both impedance measurements and increased levels of LPS indicated an impaired epithelial barrier function. FMO3 was decreased (- 20%) in the enlarged, but histologically normal livers of O-ZSF1. Alpha diversity, as indicated by the Shannon diversity index, was comparable at 8 weeks of age, but decreased by 13 weeks of age, when HFpEF manifests in O-ZSF1. Bray-Curtis dissimilarity (Beta-Diversity) was shown to be effective in differentiating L-ZSF1 from O-ZSF1 at 20 weeks of age. Members of the microbial families Lactobacillaceae, Ruminococcaceae, Erysipelotrichaceae and Lachnospiraceae were significantly differentially abundant in O-ZSF1 and L-ZSF1 rats. CONCLUSIONS: In the ZSF1 HFpEF rat model, increased dietary intake is associated with alterations in gut microbiome composition and bacterial metabolites, an impaired intestinal barrier, and changes in pro-inflammatory and health-predictive metabolic profiles. HFpEF as well as its most common comorbidities obesity and metabolic syndrome and the alterations described here evolve in parallel and are likely to be interrelated and mutually reinforcing. Dietary adaption may have a positive impact on all entities.


Assuntos
Modelos Animais de Doenças , Progressão da Doença , Microbioma Gastrointestinal , Insuficiência Cardíaca , Metilaminas , Volume Sistólico , Função Ventricular Esquerda , Animais , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/microbiologia , Insuficiência Cardíaca/metabolismo , Metilaminas/metabolismo , Metilaminas/sangue , Masculino , Obesidade/microbiologia , Obesidade/fisiopatologia , Obesidade/metabolismo , Oxigenases/metabolismo , Oxigenases/genética , Fígado/metabolismo , Biomarcadores/sangue , Fezes/microbiologia , Ratos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Bactérias/metabolismo , Disbiose
4.
Cell Metab ; 36(8): 1882-1897.e7, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38834070

RESUMO

Comprehensive whole-body models (WBMs) accounting for organ-specific dynamics have been developed to simulate adult metabolism, but such models do not exist for infants. Here, we present a resource of 360 organ-resolved, sex-specific models of newborn and infant metabolism (infant-WBMs) spanning the first 180 days of life. These infant-WBMs were parameterized to represent the distinct metabolic characteristics of newborns and infants, including nutrition, energy requirements, and thermoregulation. We demonstrate that the predicted infant growth was consistent with the recommendation by the World Health Organization. We assessed the infant-WBMs' reliability and capabilities for personalization by simulating 10,000 newborns based on their blood metabolome and birth weight. Furthermore, the infant-WBMs accurately predicted changes in known biomarkers over time and metabolic responses to treatment strategies for inherited metabolic diseases. The infant-WBM resource holds promise for personalized medicine, as the infant-WBMs could be a first step to digital metabolic twins for newborn and infant metabolism.


Assuntos
Biomarcadores , Medicina de Precisão , Humanos , Recém-Nascido , Biomarcadores/metabolismo , Biomarcadores/sangue , Lactente , Feminino , Medicina de Precisão/métodos , Masculino , Doenças Metabólicas/metabolismo , Modelos Biológicos , Peso ao Nascer
5.
Int J Neonatal Screen ; 10(1)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535121

RESUMO

Newborn screening (NBS) for hepatorenal tyrosinemia type I (HT1) based on a determination of succinylacetone is performed in countries worldwide. Recently, biallelic pathogenic variants in GSTZ1 underlying maleylacetoacetate isomerase (MAAI) deficiency have been described as a differential diagnosis in individuals with slightly elevated succinylacetone detected by NBS. We report the experience with NBS for HT1 over 53 months in a large German NBS center and the identification and characterization of additional cases with MAAI deficiency, including one individual with a natural history over 32 years. A total of 516,803 children underwent NBS for HT1 at the NBS center in Heidelberg between August 2016 and December 2020. Of 42 children with elevated succinylacetone, HT1 was confirmed in two cases (1 in 258.401). MAAI deficiency was suspected in two cases and genetically confirmed in one who showed traces of succinylacetone in urine. A previously unreported pathogenic GSTZ1 variant was found in the index in a biallelic state. Segregation analysis revealed monoallelic carriership in the index case's mother and homozygosity in his father. The 32-year-old father had no medical concerns up to that point and the laboratory work-up was unremarkable. MAAI has to be considered a rare differential diagnosis in NBS for HT1 in cases with slight elevations of succinylacetone to allow for correct counselling and treatment decisions. Our observation of natural history over 32 years adds evidence for a benign clinical course of MAAI deficiency without specific treatment.

6.
Nat Metab ; 6(3): 494-513, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443593

RESUMO

Long-lasting pain stimuli can trigger maladaptive changes in the spinal cord, reminiscent of plasticity associated with memory formation. Metabolic coupling between astrocytes and neurons has been implicated in neuronal plasticity and memory formation in the central nervous system, but neither its involvement in pathological pain nor in spinal plasticity has been tested. Here we report a form of neuroglia signalling involving spinal astrocytic glycogen dynamics triggered by persistent noxious stimulation via upregulation of the Protein Targeting to Glycogen (PTG) in spinal astrocytes. PTG drove glycogen build-up in astrocytes, and blunting glycogen accumulation and turnover by Ptg gene deletion reduced pain-related behaviours and promoted faster recovery by shortening pain maintenance in mice. Furthermore, mechanistic analyses revealed that glycogen dynamics is a critically required process for maintenance of pain by facilitating neuronal plasticity in spinal lamina 1 neurons. In summary, our study describes a previously unappreciated mechanism of astrocyte-neuron metabolic communication through glycogen breakdown in the spinal cord that fuels spinal neuron hyperexcitability.


Assuntos
Astrócitos , Dor , Camundongos , Animais , Astrócitos/metabolismo , Dor/metabolismo , Dor/patologia , Neurônios/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Glicogênio/metabolismo
7.
Mol Genet Metab ; 141(3): 108148, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302374

RESUMO

BACKGROUND: Aromatic l-amino acid decarboxylase deficiency (AADCD) is a rare, autosomal-recessive neurometabolic disorder caused by variants in dopa decarboxylase (DDC) gene, resulting in a severe combined deficiency of serotonin, dopamine, norepinephrine, and epinephrine. Birth prevalence of AADCD varies by population. In pilot studies, 3-O-methyldopa (3-OMD) was shown to be a reliable biomarker for AADCD in high-throughput newborn screening (NBS) allowing an early diagnosis and access to gene therapy. To evaluate the usefulness of this method for routine NBS, 3-OMD screening results from the largest three German NBS centers were analyzed. METHODS: A prospective, multicenter (n = 3) NBS pilot study evaluated screening for AADCD by quantifying 3-OMD in dried blood spots (DBS) using tandem mass spectrometry (MS/MS). RESULTS: In total, 766,660 neonates were screened from January 2021 until June 2023 with 766,647 with unremarkable AADCD NBS (766,443 by 1st-tier analysis and 204 by 2nd-tier analysis) and 13 with positive NBS result recalled for confirmatory diagnostics (recall-rate about 1:59,000). Molecular genetic analysis confirmed AADCD (c.79C > T p.[Arg27Cys] in Exon 2 und c.215 A > C p.[His72Pro] in Exon 3) in one infant. Another individual was highly suspected with AADCD but died before confirmation (overall positive predictive value 0.15). False-positive results were caused by maternal L-Dopa use (n = 2) and prematurity (30th and 36th week of gestation, n = 2). However, in 63% (n = 7) the underlying etiology for false positive results remained unexplained. Estimated birth prevalence (95% confidence interval) was 1:766,660 (95% CI 1:775,194; 1:769,231) to 1:383,330 (95% CI 1:384,615; 1:383,142). The identified child remained asymptomatic until last follow up at the age of 9 months. CONCLUSIONS: The proposed screening strategy with 3-OMD detection in DBS is feasible and effective to identify individuals with AADCD. The estimated birth prevalence supports earlier estimations and confirms AADCD as a very rare disorder. Pre-symptomatic identification by NBS allows a disease severity adapted drug support to diminish clinical complications until individuals are old enough for the application of the gene therapy.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Descarboxilases de Aminoácido-L-Aromático/deficiência , Espectrometria de Massas em Tandem , Lactente , Recém-Nascido , Criança , Humanos , Triagem Neonatal/métodos , Projetos Piloto , Prevalência , Estudos Prospectivos , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/epidemiologia , Erros Inatos do Metabolismo dos Aminoácidos/genética
8.
Int J Neonatal Screen ; 10(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38248633

RESUMO

Newborn screening (NBS) for cystic fibrosis (CF) based on pancreatitis-associated protein (PAP) has been performed for several years. While some influencing factors are known, there is currently a lack of information on the influence of seasonal temperature on PAP determination or on the course of PAP blood concentration in infants during the first year of life. Using data from two PAP studies at the Heidelberg NBS centre and storage experiments, we compared PAP determinations in summer and winter and determined the direct influence of temperature. In addition, PAP concentrations measured in CF-NBS, between days 21-35 and 36-365, were compared. Over a 7-year period, we found no significant differences between PAP concentrations determined in summer or winter. We also found no differences in PAP determination after 8 days of storage at 4 °C, room temperature or 37 °C. When stored for up to 3 months, PAP samples remained stable at 4 °C, but not at room temperature (p = 0.007). After birth, PAP in neonatal blood showed a significant increasing trend up to the 96th hour of life (p < 0.0001). During the first year of life, blood PAP concentrations continued to increase in both CF- (36-72 h vs. 36-365 d p < 0.0001) and non-CF infants (36-72 h vs. 36-365 d p < 0.0001). Seasonal effects in central Europe appear to have a limited impact on PAP determination. The impact of the increase in blood PAP during the critical period for CF-NBS and beyond on the applicability and performance of PAP-based CF-NBS algorithms needs to be re-discussed.

9.
Genet Med ; 26(4): 101039, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38054409

RESUMO

PURPOSE: Liver transplantation (LTx) is performed in individuals with urea cycle disorders when medical management (MM) insufficiently prevents the occurrence of hyperammonemic events. However, there is a paucity of systematic analyses on the effects of LTx on health-related outcome parameters compared to individuals with comparable severity who are medically managed. METHODS: We investigated the effects of LTx and MM on validated health-related outcome parameters, including the metabolic disease course, linear growth, and neurocognitive outcomes. Individuals were stratified into "severe" and "attenuated" categories based on the genotype-specific and validated in vitro enzyme activity. RESULTS: LTx enabled metabolic stability by prevention of further hyperammonemic events after transplantation and was associated with a more favorable growth outcome compared with individuals remaining under MM. However, neurocognitive outcome in individuals with LTx did not differ from the medically managed counterparts as reflected by the frequency of motor abnormality and cognitive standard deviation score at last observation. CONCLUSION: Whereas LTx enabled metabolic stability without further need of protein restriction or nitrogen-scavenging therapy and was associated with a more favorable growth outcome, LTx-as currently performed-was not associated with improved neurocognitive outcomes compared with long-term MM in the investigated urea cycle disorders.


Assuntos
Transplante de Fígado , Distúrbios Congênitos do Ciclo da Ureia , Humanos , Distúrbios Congênitos do Ciclo da Ureia/genética , Distúrbios Congênitos do Ciclo da Ureia/cirurgia , Proteínas , Avaliação de Resultados em Cuidados de Saúde
10.
Mol Genet Metab ; 141(1): 108097, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113552

RESUMO

Citrullinemia type 1 (CTLN1) is a rare autosomal recessive urea cycle disorder caused by deficiency of the cytosolic enzyme argininosuccinate synthetase 1 (ASS1) due to pathogenic variants in the ASS1 gene located on chromosome 9q34.11. Even though hyperammenomia is considered the major pathomechanistic factor for neurological impairment and cognitive dysfunction, a relevant subset of individuals presents with a neurodegenerative course in the absence of hyperammonemic decompensations. Here we show, that ASS1 deficiency induced by antisense-mediated knockdown of the zebrafish ASS1 homologue is associated with defective neuronal differentiation ultimately causing neuronal cell loss and consecutively decreased brain size in zebrafish larvae in vivo. Whereas ASS1-deficient zebrafish larvae are characterized by markedly elevated concentrations of citrulline - the biochemical hallmark of CTLN1, accumulation of L-citrulline, hyperammonemia or therewith associated secondary metabolic alterations did not account for the observed phenotype. Intriguingly, coinjection of the human ASS1 mRNA not only normalized citrulline concentration but also reversed the morphological cerebral phenotype and restored brain size, confirming conserved functional properties of ASS1 across species. The results of the present study imply a novel, potentially non-enzymatic (moonlighting) function of the ASS1 protein in neurodevelopment.


Assuntos
Citrulinemia , Hiperamonemia , Animais , Humanos , Citrulinemia/patologia , Peixe-Zebra/genética , Citrulina , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/metabolismo , Fenótipo , Hiperamonemia/genética
11.
Klin Padiatr ; 235(6): 366-372, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37748509

RESUMO

BACKGROUND: Sickle cell disease (SCD) is a group of hemoglobinopathies with a common point mutation causing the production of sickle cell hemoglobin (HbS). In high-throughput newborn screening (NBS) for SCD, a two-step procedure is suitable, in which qPCR first pre-selects relevant samples that are differentiated by a second method. METHODS: Three NBS centers using qPCR-based primary screening for SCD performed a laboratory comparison. Methods using tandem MS or HPLC were used for differentiation. RESULTS: In a benchmarking test, 450 dried blood samples were analyzed. Samples containing HbS were detected as reliably by qPCR as by methods established for hemoglobinopathy testing. In a two-step screening approach, the 2nd-tier-analyses have to distinguish the carrier status from pathological variants. In nine months of regular screening, a total of 353,219 samples were analyzed using two-stage NBS procedures. The 1st-tier screening by qPCR reduced the number of samples for subsequent differentiation by>99.5%. Cases with carrier status or other variants were identified as inconspicuous while 78 cases with SCD were revealed. The derived incidence of 1:4,773, is in good agreement with previously published incidences. CONCLUSION: In high-throughput NBS for SCD, qPCR is suitable to focus 2nd-tier analyses on samples containing HbS, while being unaffected by factors such as prematurity or transfusions. The substantial reduction of samples numbers positively impacts resource conservation, sustainability, and cost-effectiveness. No false negative cases came to attention.


Assuntos
Anemia Falciforme , Doenças do Recém-Nascido , Recém-Nascido , Humanos , Triagem Neonatal/métodos , Anemia Falciforme/diagnóstico , Anemia Falciforme/genética , Hemoglobina Falciforme/genética , Hemoglobina Falciforme/análise , Incidência
12.
Nutrients ; 15(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571294

RESUMO

Newborn screening (NBS) programs are effective measures of secondary prevention and have been successively extended. We aimed to evaluate NBS for methylmalonic acidurias, propionic acidemia, homocystinuria, remethylation disorders and neonatal vitamin B12 deficiency, and report on the identification of cofactor-responsive disease variants. This evaluation of the previously established combined multiple-tier NBS algorithm is part of the prospective pilot study "NGS2025" from August 2016 to September 2022. In 548,707 newborns, the combined algorithm was applied and led to positive NBS results in 458 of them. Overall, 166 newborns (prevalence 1: 3305) were confirmed (positive predictive value: 0.36); specifically, methylmalonic acidurias (N = 5), propionic acidemia (N = 4), remethylation disorders (N = 4), cystathionine beta-synthase (CBS) deficiency (N = 1) and neonatal vitamin B12 deficiency (N = 153). The majority of the identified newborns were asymptomatic at the time of the first NBS report (total: 161/166, inherited metabolic diseases: 9/14, vitamin B12 deficiency: 153/153). Three individuals were cofactor-responsive (methylmalonic acidurias: 2, CBS deficiency: 1), and could be treated by vitamin B12, vitamin B6 respectively, only. In conclusion, the combined NBS algorithm is technically feasible, allows the identification of attenuated and severe disease courses and can be considered to be evaluated for inclusion in national NBS panels.


Assuntos
Homocistinúria , Acidemia Propiônica , Deficiência de Vitamina B 12 , Humanos , Recém-Nascido , Homocistinúria/diagnóstico , Estudos Prospectivos , Triagem Neonatal/métodos , Projetos Piloto , Vitamina B 12 , Deficiência de Vitamina B 12/diagnóstico , Fenótipo , Ácido Metilmalônico/metabolismo , Vitaminas
13.
J Inherit Metab Dis ; 46(6): 1078-1088, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37603032

RESUMO

There is a clinical need for early detection of chronic kidney disease (CKD) in patients with organic acidurias. We measured kidney markers in a longitudinal study over 5 years in 40 patients with methylmalonic aciduria (Mut0 ), propionic aciduria (PA), cobalamin A (CblA), and cobalamin C (CblC) deficiencies. Neutrophil gelatinase-associated lipocalin (NGAL), calprotectin (CLP), kidney injury molecule-1 (KIM-1), dickkopf-3 (DKK-3), albumin and beta-2-microglobulin (B2MG) in urine, as well as cystatin C (CysC) in serum were quantified. In Mut0 patients, mean concentrations of B2MG, KIM-1, and DKK-3 were elevated compared with healthy controls, all markers indicative of proximal tubule damage. In PA patients, mean B2MG, albumin, and CLP were elevated, indicating signs of proximal tubule and glomerulus damage and inflammation. In CblC patients, mean B2MG, NGAL, and CLP were increased, and considered as markers for proximal and distal tubule damage and inflammation. B2MG, was elevated in all three diseases, and correlated with DKK-3 in Mut0 /CblA and with eGFR(CysC) and KIM-1 in PA patients, respectively. None of the markers were elevated in CblA patients. Significant deterioration of kidney function, as determined by steady increase in CysC concentrations was noted in seven patients within the observation period. None of the investigated biomarker profiles showed a clear increase or added value for early detection. In conclusion, we identified disease-specific biomarker profiles for inflammation, tubular, and proximal damage in the urine of Mut0 , PA, and CblC patients. Whether these biomarkers can be used for early detection of CKD requires further investigation, as significant kidney function deterioration was observed in only a few patients.


Assuntos
Insuficiência Renal Crônica , Humanos , Lipocalina-2/urina , Estudos Longitudinais , Biomarcadores/urina , Insuficiência Renal Crônica/diagnóstico , Rim , Vitamina B 12 , Aminoácidos de Cadeia Ramificada , Inflamação , Albuminas
14.
J Inherit Metab Dis ; 46(6): 1043-1062, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37603033

RESUMO

Analytical and therapeutic innovations led to a continuous but variable extension of newborn screening (NBS) programmes worldwide. Every extension requires a careful evaluation of feasibility, diagnostic (process) quality and possible health benefits to balance benefits and limitations. The aim of this study was to evaluate the suitability of 18 candidate diseases for inclusion in NBS programmes. Utilising tandem mass spectrometry as well as establishing specific diagnostic pathways with second-tier analyses, three German NBS centres designed and conducted an evaluation study for 18 candidate diseases, all of them inherited metabolic diseases. In total, 1 777 264 NBS samples were analysed. Overall, 441 positive NBS results were reported resulting in 68 confirmed diagnoses, 373 false-positive cases and an estimated cumulative prevalence of approximately 1 in 26 000 newborns. The positive predictive value ranged from 0.07 (carnitine transporter defect) to 0.67 (HMG-CoA lyase deficiency). Three individuals were missed and 14 individuals (21%) developed symptoms before the positive NBS results were reported. The majority of tested candidate diseases were found to be suitable for inclusion in NBS programmes, while multiple acyl-CoA dehydrogenase deficiency, isolated methylmalonic acidurias, propionic acidemia and malonyl-CoA decarboxylase deficiency showed some and carnitine transporter defect significant limitations. Evaluation studies are an important tool to assess the potential benefits and limitations of expanding NBS programmes to new diseases.


Assuntos
Erros Inatos do Metabolismo , Acidemia Propiônica , Humanos , Recém-Nascido , Triagem Neonatal/métodos , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/epidemiologia , Espectrometria de Massas em Tandem/métodos , Carnitina/metabolismo
15.
Mol Genet Metab ; 139(3): 107610, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245379

RESUMO

PMM2-CDG is the most common defect among the congenital disorders of glycosylation. In order to investigate the effect of hypoglycosylation on important cellular pathways, we performed extensive biochemical studies on skin fibroblasts of PMM2-CDG patients. Among others, acylcarnitines, amino acids, lysosomal proteins, organic acids and lipids were measured, which all revealed significant abnormalities. There was an increased expression of acylcarnitines and amino acids associated with increased amounts of calnexin, calreticulin and protein-disulfid-isomerase in combination with intensified amounts of ubiquitinylated proteins. Lysosomal enzyme activities were widely decreased as well as citrate and pyruvate levels indicating mitochondrial dysfunction. Main lipid classes such as phosphatidylethanolamine, cholesterol or alkyl-phosphatidylcholine, as well as minor lipid species like hexosylceramide, lysophosphatidylcholines or phosphatidylglycerol, were abnormal. Biotinidase and catalase activities were severely reduced. In this study we discuss the impact of metabolite abnormalities on the phenotype of PMM2-CDG. In addition, based on our data we propose new and easy-to-implement therapeutic approaches for PMM2-CDG patients.


Assuntos
Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases) , Humanos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/terapia , Defeitos Congênitos da Glicosilação/metabolismo , Glicosilação , Fosfotransferases (Fosfomutases)/genética , Aminoácidos/metabolismo , Lipídeos
16.
PLoS One ; 18(3): e0283024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36897914

RESUMO

Early diagnosis of severe combined immunodeficiency (SCID), spinal muscular atrophy (SMA), and sickle cell disease (SCD) improves health outcomes by providing a specific treatment before the onset of symptoms. A high-throughput nucleic acid-based method in newborn screening (NBS) has been shown to be fast and cost-effective in the early detection of these diseases. Screening for SCD has been included in Germany's NBS Program since Fall 2021 and typically requires high-throughput NBS laboratories to adopt analytical platforms that are demanding in terms of instrumentation and personnel. Thus, we developed a combined approach applying a multiplexed quantitative real-time PCR (qPCR) assay for simultaneous SCID, SMA, and 1st-tier SCD screening, followed by a tandem mass spectrometry (MS/MS) assay for 2nd-tier SCD screening. DNA is extracted from a 3.2-mm dried blood spot from which we simultaneously quantify T-cell receptor excision circles for SCID screening, identify the homozygous SMN1 exon 7 deletion for SMA screening, and determine the integrity of the DNA extraction through the quantification of a housekeeping gene. In our two-tier SCD screening strategy, our multiplex qPCR identifies samples carrying the HBB: c.20A>T allele that is coding for sickle cell hemoglobin (HbS). Subsequently, the 2nd tier MS/MS assay is used to distinguish heterozygous HbS/A carriers from samples of patients with homozygous or compound heterozygous SCD. Between July 2021 and March 2022, 96,015 samples were screened by applying the newly implemented assay. The screening revealed two positive SCID cases, while 14 newborns with SMA were detected. Concurrently, the qPCR assay registered HbS in 431 samples which were submitted to 2nd-tier SCD screening, resulting in 17 HbS/S, five HbS/C, and two HbS/ß thalassemia patients. The results of our quadruplex qPCR assay demonstrate a cost-effective and fast approach for a combined screening of three diseases that benefit from nucleic-acid based methods in high-throughput NBS laboratories.


Assuntos
Anemia Falciforme , Atrofia Muscular Espinal , Imunodeficiência Combinada Severa , Humanos , Recém-Nascido , Triagem Neonatal/métodos , Espectrometria de Massas em Tandem , Hemoglobina Falciforme , DNA , Atrofia Muscular Espinal/genética
17.
Clin Biochem ; 111: 72-80, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36202155

RESUMO

OBJECTIVES: Determination of methylmalonic acid (MMA) from dried blood spots (DBS) is commonly performed in clinical diagnostics and newborn screening for propionic acidemia (PA) and methylmalonic acidemia. Isobaric compounds of MMA having the same mass can affect diagnostic reliability and quantitative results, which represents a previously unrecognized pitfall in clinical assays for MMA. We set out to identify interfering substances of MMA in DBS, serum and urine samples from confirmed patients with PA and methylmalonic acidemia. METHODS: Techniques included quadrupole time-of-flight high-resolution mass spectrometry (QTOF HR-MS), nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography (LC) and tandem mass spectrometry (MS/MS). RESULTS: The five isobaric metabolites detected in DBS, serum and urine from PA and methylmalonic acidemia patients were confirmed as 2-methyl-3-hydroxybutyrate, 3-hydroxyisovalerate, 2-hydroxyisovalerate, 3-hydroxyvalerate and succinate using a series of experiments. An additional unknown substance with low abundance remained unidentified. CONCLUSIONS: The presented results facilitate the diagnostic and quantitative reliability of the MMA determination in clinical assays. Isobaric species should be investigated in assays for MMA to eliminate possible interference in a wide range of conditions including PA, methylmalonic acidemia, a vitamin B12 deficiency, ketosis and lactic acidosis.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Acidemia Propiônica , Recém-Nascido , Humanos , Triagem Neonatal/métodos , Acidemia Propiônica/diagnóstico , Espectrometria de Massas em Tandem , Ácido Metilmalônico/urina , Reprodutibilidade dos Testes , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico
18.
J Inherit Metab Dis ; 46(3): 482-519, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36221165

RESUMO

Glutaric aciduria type 1 is a rare inherited neurometabolic disorder of lysine metabolism caused by pathogenic gene variations in GCDH (cytogenic location: 19p13.13), resulting in deficiency of mitochondrial glutaryl-CoA dehydrogenase (GCDH) and, consequently, accumulation of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid and glutarylcarnitine detectable by gas chromatography/mass spectrometry (organic acids) and tandem mass spectrometry (acylcarnitines). Depending on residual GCDH activity, biochemical high and low excreting phenotypes have been defined. Most untreated individuals present with acute onset of striatal damage before age 3 (to 6) years, precipitated by infectious diseases, fever or surgery, resulting in irreversible, mostly dystonic movement disorder with limited life expectancy. In some patients, striatal damage develops insidiously. In recent years, the clinical phenotype has been extended by the finding of extrastriatal abnormalities and cognitive dysfunction, preferably in the high excreter group, as well as chronic kidney failure. Newborn screening is the prerequisite for pre-symptomatic start of metabolic treatment with low lysine diet, carnitine supplementation and intensified emergency treatment during catabolic episodes, which, in combination, have substantially improved neurologic outcome. In contrast, start of treatment after onset of symptoms cannot reverse existing motor dysfunction caused by striatal damage. Dietary treatment can be relaxed after the vulnerable period for striatal damage, that is, age 6 years. However, impact of dietary relaxation on long-term outcomes is still unclear. This third revision of evidence-based recommendations aims to re-evaluate previous recommendations (Boy et al., J Inherit Metab Dis, 2017;40(1):75-101; Kolker et al., J Inherit Metab Dis 2011;34(3):677-694; Kolker et al., J Inherit Metab Dis, 2007;30(1):5-22) and to implement new research findings on the evolving phenotypic diversity as well as the impact of non-interventional variables and treatment quality on clinical outcomes.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Humanos , Glutaril-CoA Desidrogenase , Lisina/metabolismo , Encefalopatias Metabólicas/diagnóstico , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/terapia , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Glutaratos/metabolismo
19.
Ann Clin Transl Neurol ; 9(11): 1715-1726, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36217298

RESUMO

OBJECTIVE: Ornithine transcarbamylase deficiency (OTC-D) is an X-linked metabolic disease and the most common urea cycle disorder. Due to high phenotypic heterogeneity, ranging from lethal neonatal hyperammonemic events to moderate symptoms and even asymptomatic individuals, the prediction of the disease course at an early disease stage is very important to individually adjust therapies such as medical treatment or liver transplantation. In this translational study, we developed a severity-adjusted classification system based on in vitro residual enzymatic OTC activity. METHODS: Applying a cell-based expression system, residual enzymatic OTC activities of 71 pathogenic OTC variants were spectrophotometrically determined and subsequently correlated with clinical and biochemical outcome parameters of 119 male individuals with OTC-D (mOTC-D) as reported in the UCDC and E-IMD registries. RESULTS: Integration of multiple data sources enabled the establishment of a robust disease prediction model for mOTC-D. Residual enzymatic OTC activity not only correlates with age at first symptoms, initial peak plasma ammonium concentration and frequency of metabolic decompensations but also predicts mortality. The critical threshold of 4.3% residual enzymatic activity distinguishes a severe from an attenuated phenotype. INTERPRETATION: Residual enzymatic OTC activity reliably predicts the disease severity in mOTC-D and could thus serve as a tool for severity-adjusted evaluation of therapeutic strategies and counselling patients and parents.


Assuntos
Hiperamonemia , Doença da Deficiência de Ornitina Carbomoiltransferase , Masculino , Humanos , Doença da Deficiência de Ornitina Carbomoiltransferase/diagnóstico , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia , Hiperamonemia/etiologia , Hiperamonemia/genética , Fenótipo , Índice de Gravidade de Doença
20.
Mol Ther Methods Clin Dev ; 26: 294-308, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35949297

RESUMO

Hereditary tyrosinemia type 1 is an inborn error of amino acid metabolism characterized by deficiency of fumarylacetoacetate hydrolase (FAH). Only limited treatment options (e.g., oral nitisinone) are available. Patients must adhere to a strict diet and face a life-long risk of complications, including liver cancer and progressive neurocognitive decline. There is a tremendous need for innovative therapies that standardize metabolite levels and promise normal development. Here, we describe an mRNA-based therapeutic approach that rescues Fah-deficient mice, a well-established tyrosinemia model. Repeated intravenous or intramuscular administration of lipid nanoparticle-formulated human FAH mRNA resulted in FAH protein synthesis in deficient mouse livers, stabilized body weight, normalized pathologic increases in metabolites after nitisinone withdrawal, and prevented early death. Dose reduction and extended injection intervals proved therapeutically effective. These results provide proof of concept for an mRNA-based therapeutic approach to treating hereditary tyrosinemia type 1 that is superior to the standard of care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA