Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Reprod Sci ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664359

RESUMO

In recent years, an increasing number of genes associated with male and female infertility have been identified. The genetics of infertility is no longer limited to the analysis of karyotypes or specific genes, and it is now possible to analyse several dozen infertility genes simultaneously. Here, we present the diagnostic activity over the past two years including 140 patients (63 women and 77 men). Targeted sequencing revealed causative variants in 17 patients, representing an overall diagnostic rate of 12.1%, with prevalence rates in females and males of 11% and 13%, respectively. The gene-disease relationship (GDR) was re-evaluated for genes due to the addition of new patients and/or variants in the actual study. Five genes changed categories: two female genes (MEIOB and TBPL2) moved from limited to moderate; two male genes (SOHLH1 and GALNTL5) moved from no evidence to strong and from limited to moderate; and SEPTIN12, which was unable to classify male infertility, was reclassified as limited. Many infertility genes have yet to be identified. With the increasing integration of genetics in reproductive medicine, the scope of intervention extends to include other family members, in addition to individual patients or couples. Genetic counselling consultations and appropriate staffing will need to be established in fertility centres. Trial registration number: Not applicable.

2.
Hum Reprod ; 38(12): 2289-2295, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37801292

RESUMO

The field of reproductive genetics has undergone significant advancements with the completion of the Human Genome Project and the development of high-throughput sequencing techniques. This has led to the identification of numerous genes involved in both male and female infertility, revolutionizing the diagnosis and management of infertility patients. Genetic investigations, including karyotyping, specific genetic tests, and high-throughput sequencing, have become essential in determining the genetic causes of infertility. Moreover, the integration of genetics into reproductive medicine has expanded the scope of care to include not only affected individuals or couples but also their family members. Genetic consultations and counselling play a crucial role in identifying potentially affected relatives and offering tailored therapy and the possibility of fertility preservation. Despite the current limited therapeutic options, an increasing understanding of genotype-phenotype correlations in infertility genes holds promise for improved treatment outcomes. The availability of genetic diagnostic tools has reduced the number of idiopathic infertility cases by providing accurate aetiological diagnoses. The transition from research to clinical practice in reproductive genetics requires the establishment of genetic consultations and data warehousing systems to provide up-to-date information on gene-disease relationships. Overall, the integration of genetics into reproductive medicine has brought about a paradigm shift, emphasizing the familial dimension of infertility and offering new possibilities for personalized care and family planning.


Assuntos
Infertilidade Feminina , Infertilidade Masculina , Infertilidade , Gravidez , Humanos , Masculino , Feminino , Infertilidade/genética , Infertilidade/terapia , Reprodução/genética , Infertilidade Feminina/genética , Infertilidade Feminina/terapia , Testes Genéticos , Gravidez Múltipla , Serviços de Planejamento Familiar , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Infertilidade Masculina/terapia
3.
Hum Reprod ; 38(2): 306-314, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524333

RESUMO

STUDY QUESTION: Can the analysis of a large Turkish consanguineous family via whole exome sequencing (WES) identify novel causative genetic variation responsible for nonobstructive azoospermia (NOA) characterized by arrest at primary spermatocyte stage? SUMMARY ANSWER: WES analysis revealed a homozygous nonsense variant in HORMAD1 in three affected brothers of a Turkish family. WHAT IS KNOWN ALREADY: Studying patient cohorts in small or large consanguineous families using high-throughput sequencing allows the identification of genetic causes of different pathologies, including infertility. Over the last two decades, a number of genes involved in human male infertility have been discovered, but only 14 genes have been identified as being at least moderately linked to isolated NOA or oligozoospermia in men. STUDY DESIGN, SIZE, DURATION: The study included a Turkish family comprising three brothers with NOA. Two brothers had a normal karyotype, normal hormonal levels and no Yq microdeletion. The testicular histopathology analysis revealed the complete arrest of spermatogenesis at the primary spermatocyte stage. PARTICIPANTS/MATERIALS, SETTING, METHODS: We recruited a consanguineous Turkish family where parents were first-degree cousins and had seven children; three sons who had NOA, two sons who were fertile and two daughters for whom no information was available. Saliva samples from the index patient, his two affected brothers, parents and two nonaffected brothers (seven samples in total) were collected. Prior to WES, the index patient underwent targeted genetic testing using an infertility panel, which includes 133 infertility genes. No pathogenic variations were identified. WES was then performed on the DNA of the seven family members available. Bioinformatics analysis was performed using an in-house pipeline. Detected variants were scored and ranked, and copy number variants were called and annotated.The consequences of mutation on protein expression and localization were investigated by cell transfection followed by immunofluorescence or immunoblotting. MAIN RESULTS AND THE ROLE OF CHANCE: WES revealed a homozygous nonsense variant chr1:150675797G>A; HORMAD1 (NM_032132.5): c.1021C>T, p.Gln341* in exon 13, which was confirmed in all three affected brothers. HORMAD1 encodes the HORMA domain-containing protein 1. The parents as well as the two fertile brothers were carriers of this variant. This variant may lead to the production of a truncated protein lacking the nuclear localization signal; therefore, human cells were transfected with the wild-type and mutated form, in fusion with green fluorescent protein. Immunoblotting experiments confirmed the production of a truncated HORMAD1 protein, and immunofluorescence microscopy revealed that the mutated protein displayed cytoplasmic localization while the wild type protein located to the nucleus. Altogether, our findings validate HORMAD1 as an essential genetic factor in the meiotic process in human. LIMITATIONS, REASONS FOR CAUTION: According to one scoring system used to evaluate the clinical validity of male infertility genes, this study would classify HORMAD1 as displaying limited clinical evidence of being involved in male infertility. However, such a score is the maximum possible when only one family is analyzed and the addition of one patient showing a pathogenic or likely pathogenic variant would immediately change this classification to 'moderate'. Thus, this report should prompt other researchers to screen patients with NOA for this genetic variant. WIDER IMPLICATIONS OF THE FINDINGS: Identification of new genetic factors involved in the human meiosis process will contribute to an improvement of our knowledge at the basic level, which in turn will allow the management of better care for infertile patients. Since Hormad1-/- knock-out female mice are also infertile, HORMAD1 could also be involved in human female infertility. Our findings have direct implications for the genetic counseling of patients and their family members. STUDY FUNDING/COMPETING INTEREST(S): The study was funded by Fondation Maladies Rares (High Throughput Sequencing and Rare Diseases-2018, 'GenOmics of rare diseases'). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Azoospermia , Infertilidade Masculina , Animais , Camundongos , Criança , Humanos , Masculino , Feminino , Azoospermia/genética , Azoospermia/patologia , Consanguinidade , Doenças Raras , Infertilidade Masculina/genética , Proteínas/genética , Proteínas de Ciclo Celular/genética
4.
Hum Reprod Update ; 29(2): 218-232, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571510

RESUMO

BACKGROUND: As in other domains of medicine, high-throughput sequencing methods have led to the identification of an ever-increasing number of gene variants in the fields of both male and female infertility. The increasing number of recently identified genes allows an accurate diagnosis for previously idiopathic cases of female infertility and more appropriate patient care. However, robust evidence of the gene-disease relationships (GDR) allowing the proper translation to clinical application is still missing in many cases. OBJECTIVE AND RATIONALE: An evidence-based curation of currently identified genes involved in female infertility and differences in sex development (DSD) would significantly improve both diagnostic performance and genetic research. We therefore performed a systematic review to summarize current knowledge and assess the available GDR. SEARCH METHODS: PRISMA guidelines were applied to curate all available information from PubMed and Web of Science on genetics of human female infertility and DSD leading to infertility, from 1 January 1988 to 1 November 2021. The reviewed pathologies include non-syndromic as well as syndromic female infertility, and endocrine and reproductive system disorders. The evidence that an identified phenotype is caused by pathogenic variants in a specific gene was assessed according to a standardized scoring system. A final score (no evidence, limited, moderate, strong, or definitive) was assigned to every GDR. OUTCOMES: A total of 45 271 publications were identified and screened for inclusion of which 1078 were selected for gene and variant extraction. We have identified 395 genes and validated 466 GDRs covering all reported monogenic causes of female infertility and DSD. Furthermore, we present a genetic diagnostic flowchart including 105 genes with at least moderate evidence for female infertility and suggest recommendations for future research. The study did not take into account associated genetic risk factor(s) or oligogenic/polygenic causes of female infertility. WIDER IMPLICATIONS: We have comprehensively reviewed the existing research on the genetics of female infertility and DSD, which will enable the development of diagnostic panels using validated genes. Whole genome analysis is shifting from predominantly research to clinical application, increasing its diagnostic potential. These new diagnostic possibilities will not only decrease the number of idiopathic cases but will also render genetic counselling more effective for infertile patients and their families.


Assuntos
Infertilidade Feminina , Humanos , Masculino , Feminino , Infertilidade Feminina/genética , Fenótipo , Aconselhamento Genético , Desenvolvimento Sexual
5.
Genes (Basel) ; 12(3)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809228

RESUMO

Infertility is a global healthcare problem, which affects men and women equally. With the advance of genome-wide analysis, an increasing list of human genes involved in infertility is now available. In order to evaluate the diagnostic interest to analyze these genes, we have designed a gene panel allowing the analysis of 51 genes involved in non-syndromic human infertility. In this initial evaluation study, a cohort of 94 non-syndromic infertility cases with a well-defined infertility phenotype was examined. Five patients with previously known mutations were used as positive controls. With a mean coverage of 457×, and 99.8% of target bases successfully sequenced with a depth coverage over 30×, we prove the robustness and the quality of our panel. In total, we identified pathogenic or likely pathogenic variations in eight patients (five male and three female). With a diagnostic yield of 8.5% and the identification of a variety of variants including substitution, insertion, deletion, and copy number variations, our results demonstrate the usefulness of such a strategy, as well as the efficiency and the quality of this diagnostic gene panel.


Assuntos
Infertilidade/diagnóstico , Infertilidade/genética , Adulto , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Feminino , Testes Genéticos/métodos , Humanos , Masculino , Mutação/genética , Fenótipo
6.
G3 (Bethesda) ; 10(12): 4449-4457, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33055224

RESUMO

Globozoospermia is a rare form of male infertility where men produce round-headed sperm that are incapable of fertilizing an oocyte naturally. In a previous study where we undertook a whole exome screen to define novel genetic causes of globozoospermia, we identified homozygous mutations in the gene PDCD2L Two brothers carried a p.(Leu225Val) variant predicted to introduce a novel splice donor site, thus presenting PDCD2L as a potential regulator of male fertility. In this study, we generated a Pdcd2l knockout mouse to test its role in male fertility. Contrary to the phenotype predicted from its testis-enriched expression pattern, Pdcd2l null mice died during embryogenesis. Specifically, we identified that Pdcd2l is essential for post-implantation embryonic development. Pdcd2l-/- embryos were resorbed at embryonic days 12.5-17.5 and no knockout pups were born, while adult heterozygous Pdcd2l males had comparable fertility to wildtype males. To specifically investigate the role of PDCD2L in germ cells, we employed Drosophila melanogaster as a model system. Consistent with the mouse data, global knockdown of trus, the fly ortholog of PDCD2L, resulted in lethality in flies at the third instar larval stage. However, germ cell-specific knockdown with two germ cell drivers did not affect male fertility. Collectively, these data suggest that PDCD2L is not essential for male fertility. By contrast, our results demonstrate an evolutionarily conserved role of PDCD2L in development.


Assuntos
Desenvolvimento Embrionário , Infertilidade Masculina , Adulto , Animais , Apoptose , Proteínas de Transporte , Drosophila melanogaster/genética , Desenvolvimento Embrionário/genética , Feminino , Humanos , Infertilidade Masculina/genética , Masculino , Camundongos , Gravidez , Espermatozoides
7.
Genes (Basel) ; 11(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244758

RESUMO

In vitro fertilization (IVF) involves controlled ovarian hyperstimulation using hormones to produce large numbers of oocytes. The success of IVF is tightly linked to the availability of mature oocytes. In most cases, about 70% to 80% of the oocytes are mature at the time of retrieval, however, in rare instances, all of them may be immature, implying that they were not able to reach the metaphase II (MII) stage. The failure to obtain any mature oocytes, despite a well conducted ovarian stimulation in repeated cycles is a very rare cause of primary female infertility, for which the underlying suspected genetic factors are still largely unknown. In this study, we present the whole exome sequencing analysis of a consanguineous Turkish family comprising three sisters with a recurrent oocyte maturation defect. Analysis of the data reveals a homozygous splice site mutation (c.1775-3C>A) in the zona pellucida glycoprotein 1 (ZP1) gene. Minigene experiments show that the mutation causes the retention of the intron 11 sequence between exon 11 and exon 12, resulting in a frameshift and the likely production of a truncated protein.


Assuntos
Técnicas de Maturação in Vitro de Oócitos/métodos , Mutação , Oócitos/patologia , Oogênese/genética , Sítios de Splice de RNA/genética , Glicoproteínas da Zona Pelúcida/genética , Adulto , Feminino , Humanos , Masculino , Oócitos/metabolismo , Indução da Ovulação , Linhagem
8.
J Assist Reprod Genet ; 35(11): 1939-1951, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30259277

RESUMO

PURPOSE: This review provides an update on the genetics of male infertility with emphasis on the current state of research, the genetic disorders that can lead to non-syndromic male infertility, and the genetic tests available for patients. METHODS: A comprehensive review of the scientific literature referenced in PubMed was conducted using keywords related to male infertility and genetics. The search included articles with English abstracts appearing online after 2000. RESULTS: Mutations in 31 distinct genes have been identified as a cause of non-syndromic human male infertility, and the number is increasing constantly. Screening gene panels by high-throughput sequencing can be offered to patients in order to identify genes involved in various forms of human non-syndromic infertility. We propose a workflow for genetic tests which takes into account semen alterations. CONCLUSIONS: The identification and characterization of the genetic basis of male infertility have broad implications not only for understanding the cause of infertility but also in determining the prognosis, selection of treatment options, and management of couples. Genetic diagnosis is essential for the success of ART techniques and for preserving future fertility as well as the prognosis for testicular sperm extraction (TESE) and adopted therapeutics.


Assuntos
Aberrações Cromossômicas , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Espermatogênese , Estudos de Avaliação como Assunto , Humanos , Masculino
9.
Hum Mutat ; 38(11): 1592-1605, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801929

RESUMO

Microdeletions of the Y chromosome (YCMs), Klinefelter syndrome (47,XXY), and CFTR mutations are known genetic causes of severe male infertility, but the majority of cases remain idiopathic. Here, we describe a novel method using single molecule Molecular Inversion Probes (smMIPs), to screen infertile men for mutations and copy number variations affecting known disease genes. We designed a set of 4,525 smMIPs targeting the coding regions of causal (n = 6) and candidate (n = 101) male infertility genes. After extensive validation, we screened 1,112 idiopathic infertile men with non-obstructive azoospermia or severe oligozoospermia. In addition to five chromosome YCMs and six other sex chromosomal anomalies, we identified five patients with rare recessive mutations in CFTR as well as a patient with a rare heterozygous frameshift mutation in SYCP3 that may be of clinical relevance. This results in a genetic diagnosis in 11-17 patients (1%-1.5%), a yield that may increase significantly when more genes are confidently linked to male infertility. In conclusion, we developed a flexible and scalable method to reliably detect genetic causes of male infertility. The assay consolidates the detection of different types of genetic variation while increasing the diagnostic yield and detection precision at the same or lower price compared with currently used methods.


Assuntos
Azoospermia/diagnóstico , Azoospermia/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Oligospermia/diagnóstico , Oligospermia/genética , Aberrações Cromossômicas , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Estudos de Associação Genética/métodos , Estudos de Associação Genética/normas , Testes Genéticos/métodos , Testes Genéticos/normas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação , Fenótipo , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Aberrações dos Cromossomos Sexuais , Contagem de Espermatozoides
10.
J Assist Reprod Genet ; 34(5): 683-694, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28401488

RESUMO

PURPOSE: The purpose of this study was to identify mutations that cause non-syndromic male infertility using whole exome sequencing of family cases. METHODS: We recruited a consanguineous Turkish family comprising nine siblings with male triplets; two of the triplets were infertile as well as one younger infertile brother. Whole exome sequencing (WES) performed on two azoospermic brothers identified a mutation in the melanoma antigen family B4 (MAGEB4) gene which was confirmed via Sanger sequencing and then screened for on control groups and unrelated infertile subjects. The effect of the mutation on messenger RNA (mRNA) and protein levels was tested after in vitro cell transfection. Structural features of MAGEB4 were predicted throughout the conserved MAGE domain. RESULTS: The novel single-base substitution (c.1041A>T) in the X-linked MAGEB4 gene was identified as a no-stop mutation. The mutation is predicted to add 24 amino acids to the C-terminus of MAGEB4. Our functional studies were unable to detect any effect either on mRNA stability, intracellular localization of the protein, or the ability to homodimerize/heterodimerize with other MAGE proteins. We thus hypothesize that these additional amino acids may affect the proper protein interactions with MAGEB4 partners. CONCLUSION: The whole exome analysis of a consanguineous Turkish family revealed MAGEB4 as a possible new X-linked cause of inherited male infertility. This study provides the first clue to the physiological function of a MAGE protein.


Assuntos
Antígenos de Neoplasias/genética , Azoospermia/genética , Genes Ligados ao Cromossomo X/genética , Infertilidade Masculina/genética , Proteínas de Neoplasias/genética , Oligospermia/genética , Adulto , Azoospermia/patologia , Pré-Escolar , Consanguinidade , Frequência do Gene , Homozigoto , Humanos , Infertilidade Masculina/patologia , Masculino , Mutação , Oligospermia/patologia , Linhagem , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , Sequenciamento do Exoma
11.
J Assist Reprod Genet ; 33(6): 815-20, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27086357

RESUMO

PURPOSE: The aim of this study is to identify potential genes involved in human globozoopsermia. METHODS: Nineteen globozoospermic patients (previously screened for DPY19L2 mutations with no causative mutation) were recruited in this study and screened for mutations in genes implicated in human globozoospermia SPATA16 and PICK1. Using the candidate gene approach and the determination of Spata16 partners by Glutathione S-transferase (GST) pull-down four genes were also selected and screened for mutations. RESULTS: We identified a novel mutation of SPATA16: deletion of 22.6 Kb encompassing the first coding exon in two unrelated Tunisian patients who presented the same deletion breakpoints. The two patients shared the same haplotype, suggesting a possible ancestral founder effect for this new deletion. Four genes were selected using the candidate gene approach and the GST pull-down (GOPC, PICK1, AGFG1 and IRGC) and were screened for mutation, but no variation was identified. CONCLUSIONS: The present study confirms the pathogenicity of the SPATA16 mutations. The fact that no variation was detected in the coding sequence of AFGF1, GOPC, PICK1 and IRGC does not mean that they are not involved in human globozoospermia. A larger globozoospermic cohort must be studied in order to accelerate the process of identifying new genes involved in such phenotypes. Until sufficient numbers of patients have been screened, AFGF1, GOPC, PICK1 and IRGC should still be considered as candidate genes.


Assuntos
Proteínas de Homeodomínio/genética , Mutação , Teratozoospermia/genética , Análise Mutacional de DNA , Efeito Fundador , Genótipo , Haplótipos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Deleção de Sequência , Proteínas de Transporte Vesicular
12.
Mol Hum Reprod ; 22(1): 35-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26516168

RESUMO

STUDY HYPOTHESIS: The purpose of this study was to analyze DPY19L2 sequence variants to investigate the mechanism leading to the entire DPY19L2 deletion in a large cohort of infertile globozoospermic patients. STUDY FINDING: An improved analysis of the DPY19L2 deletion breakpoints (BPs) allowed us to identify two BPs located in a small 1 kb region and to more precisely localize the BPs reported previously. WHAT IS KNOWN ALREADY: Three genes [spermatogenesis associated 16 (SPATA16), protein interacting with PRKCA (PICK1) and DPY19L2] were previously correlated with globozoospermia, but a homozygous deletion of the entire DPY19L2 was identified as the most frequent alteration causing this phenotype. In addition, several point mutations in this gene were reported. In previous work, we have identified nine BPs for the DPY19L2 deletion clustered in two hotspot regions, while others reported a total of five BPs. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: We screened for the DPY19L2 deletion and for mutations in the DPY19L2, SPATA16 and PICK1 genes in a cohort of 21 Tunisian globozoospermic patients. In order to characterize the DPY19L2 deletion BPs, we sequenced a 2 kb fragment on low copy repeat (LCR) 1 and LCR2 in Tunisian fertile controls to distinguish between single-nucleotide polymorphisms (SNPs) and LCR-specific markers. MAIN RESULTS AND THE ROLE OF CHANCE: Molecular analyses performed on 18 genetically independent individuals showed that 11 (61.1%) were homozygous for the DPY19L2 deletion, 2 (11.1%) were homozygous for the non-synonymous mutation (p.R298C) in exon 8, 1 patient (5.6%) was homozygous for a new splice-site mutation at the junction exon-intron 16 [c.1579_1580+4delAGGTAAinsTCAT] and no DPY19L2, SPATA16 or PICK1 mutations were identified for 4 patients (22.2%). By defining 15 specific LCR markers, we characterized 2 BPs for the DPY19L2 deletion in 11 patients showing the homozygous deletion. Using 20 non-LCR-specific SNPs, we identified 8 distinct haplotypes. LIMITATIONS, REASONS FOR CAUTION: A limitation of this study is the small number of patients owing to the rarity of this form of male infertility. WIDER IMPLICATIONS OF THE FINDINGS: Our data showed that some nucleotides, described by others as LCR-specific markers and used to limit their BPs, were in fact SNPs demonstrating the difficulty in precisely determining the localization of BPs. LARGE SCALE DATA: Not applicable. STUDY FUNDING AND COMPETING INTERESTS: This work was supported by the French Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), the Ministère de l'Education Nationale et de l'Enseignement Supérieur et de la Recherche, the University of Strasbourg, the University Hospital of Strasbourg, the Agence Nationale pour la Recherche, the Agence de la BioMédecine and l'Agence Universitaire de la Francophonie (AUF). There are no conflicts of interest to declare.


Assuntos
Infertilidade Masculina/genética , Proteínas de Membrana/genética , Acrossomo/ultraestrutura , Alelos , Proteínas de Transporte/genética , Pontos de Quebra do Cromossomo , Consanguinidade , Éxons/genética , Deleção de Genes , Dosagem de Genes , Haplótipos/genética , Proteínas de Homeodomínio/genética , Humanos , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/fisiologia , Proteínas Nucleares/genética , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Sítios de Splice de RNA/genética , Alinhamento de Sequência , Espermatozoides/anormalidades , Espermatozoides/ultraestrutura , Tunísia/epidemiologia , Proteínas de Transporte Vesicular
13.
Hum Mol Genet ; 24(19): 5581-8, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26199321

RESUMO

Infertility is a global healthcare problem, and despite long years of assisted reproductive activities, a significant number of cases remain idiopathic. Our currently restricted understanding of basic mechanisms driving human gametogenesis severely limits the improvement of clinical care for infertile patients. Using exome sequencing, we identified a nonsense mutation leading to a premature stop in the TEX15 locus (c.2130T>G, p.Y710*) in a consanguineous Turkish family comprising eight siblings in which three brothers were identified as infertile. TEX15 displays testis-specific expression, maps to chromosome 8, contains four exons and encodes a 2789-amino acid protein with uncertain function. The mutation, which should lead to early translational termination at the first exon of TEX15, co-segregated with the infertility phenotype, and our data strongly suggest that it is the cause of spermatogenic defects in the family. All three affected brothers presented a phenotype reminiscent of the one observed in KO mice. Indeed, previously reported results demonstrated that disruption of the orthologous gene in mice caused a drastic reduction in testis size and meiotic arrest in the first wave of spermatogenesis in males while female KO mice were fertile. The data from our study of one Turkish family suggested that the identified mutation correlates with a decrease in sperm count over time. A diagnostic test identifying the mutation in man could provide an indication of spermatogenic failure and prompt patients to undertake sperm cryopreservation at an early age.


Assuntos
Proteínas de Ciclo Celular/genética , Códon sem Sentido , Infertilidade Masculina/genética , Análise de Sequência de DNA/métodos , Espermatogênese , População Branca/genética , Consanguinidade , Exoma , Predisposição Genética para Doença , Humanos , Infertilidade Masculina/patologia , Masculino , Meiose , Oligospermia , Tamanho do Órgão , Linhagem , Testículo/anatomia & histologia , Fatores de Tempo , Turquia
14.
Turk J Pediatr ; 45(2): 99-101, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12921294

RESUMO

Achondroplasia, the most common form of skeletal dysplasia in man, has autosomal dominant inheritance and causes severe dwarfism. More than 90% of patients with achondroplasia have a G to A transversion or G to C transversion at position 1138 of the fibroblast growth factor receptor-3 (FGFR3) gene resulting in the substitution of an arginine for a glycine residue at position 380 (G380R) of the FGFR3 protein. In this study, 12 unrelated Turkish patients with achondroplasia were evaluated for the G to A and G to C transversion at position 1138 of the FGFR3 gene. Eleven of 12 patients carried the G to A mutation heterozygously. None of the patients had the G to C mutation at the same position. In conclusion, the vast majority of Turkish achondroplasia patients have the same mutation that has been most often defined in patients with achondroplasia from other countries. Our results give further support to the fact that the G380R mutation of FGFR-3 is the most common mutation causing achondroplasia in different populations.


Assuntos
Acondroplasia/genética , Mutação , Proteínas Tirosina Quinases , Receptores de Fatores de Crescimento de Fibroblastos/genética , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Humanos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA