Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 12(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36902508

RESUMO

Acute lung injury (ALI) is a disease, with no effective treatment, which might result in death. Formations of excessive inflammation and oxidative stress are responsible for the pathophysiology of ALI. Nebivolol (NBL), a third-generation selective ß1 adrenoceptor antagonist, has protective pharmacological properties, such as anti-inflammatory, anti-apoptotic, and antioxidant functions. Consequently, we sought to assess the efficacy of NBL on a lipopolysaccharide (LPS)-induced ALI model via intercellular adhesion molecule-1 (ICAM-1) expression and the tissue inhibitor of metalloproteinases-1 (TIMP-1)/matrix metalloproteinases-2 (MMP-2) signaling. Thirty-two rats were split into four categories: control, LPS (5 mg/kg, intraperitoneally [IP], single dose), LPS (5 mg/kg, IP, one dosage 30 min after last NBL treatment), + NBL (10 mg/kg oral gavage for three days), and NBL (10 mg/kg oral gavage for three days). Six hours after the administration of LPS, the lung tissues of the rats were removed for histopathological, biochemical, gene expression, and immunohistochemical analyses. Oxidative stress markers such as total oxidant status and oxidative stress index levels, leukocyte transendothelial migration markers such as MMP-2, TIMP-1, and ICAM-1 expressions in the case of inflammation, and caspase-3 as an apoptotic marker, significantly increased in the LPS group. NBL therapy reversed all these changes. The results of this study suggest that NBL has utility as a potential therapeutic agent to dampen inflammation in other lung and tissue injury models.

2.
Toxicol Mech Methods ; 33(3): 239-247, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36482745

RESUMO

Methotrexate (MTX) is an anticancer agent widely used in clinical practice for various oncological, rheumatological, autoimmune, and inflammatory diseases. However, the side effects of MTX limit its usage for treatment. In addition, diffuse alveolar damage, interstitial pneumonia, fibrosis, and pleural reactions may be encountered in MTX-induced pulmonary toxicity. Ramelteon (RML), a melatonin receptor agonist, has antioxidant, anti-inflammatory, and protective effects are shown by several studies. This study aimed to show the antioxidant, anti-inflammatory, and antiapoptotic effects of RML and its effect on the airway surface liquid volume homeostasis via aquaporins (AQP) in MTX-induced lung injury. Thirty-two female Wistar Albino rats were grouped into four groups as control, MTX (20 mg/kg, intraperitoneally, a single dose), MTX + RML, and RML (10 mg/kg, via oral gavage, for seven days) groups. Once the experiment ended, the rats' lung tissues were taken for biochemical, genetic, histopathological, and immunohistochemical examinations. MTX significantly increased oxidative stress index and total oxidative status, and decreased total antioxidant status levels by 202.0%, 141.4%, 20.2%, respectively, relative to the control (p ˂ 0.001 for all). AQP-1/5, which is an indicator of lung damage, was also found to decrease significantly (p ˂ 0.001). In addition, a significant increase was observed in interleukin-1ß, interferon-beta, and caspase-8 expressions and histopathological changes as a result of immunohistochemical and histochemical examinations (p ˂ 0.001). RML treatment ameliorated all these changes and significantly regressed lung damage. Our results suggest that RML might be used as a lung-protective agent in various models of lung and tissue injury.


Assuntos
Antioxidantes , Pneumopatias , Animais , Ratos , Feminino , Antioxidantes/metabolismo , Ratos Wistar , Metotrexato/toxicidade , Estresse Oxidativo , Pneumopatias/induzido quimicamente , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia
3.
Int J Low Extrem Wounds ; : 15347346211041869, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34516276

RESUMO

Only ultraviolet-C (UV-C) from UV lights, which are emitted by the sun and absorbed by the atmosphere's ozone layer, does not reach the Earth's surface. UV-C is a powerful disinfection method that is commonly used to sterilize fluids, air, and surfaces. There is a little knowledge of the effects of UV-C radiation on living bodies. The purpose of this study is to examine the ameliorative effect of UV-C on skin lesions in mice that have been experimentally created and infected with Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus sp. In total, 32 mice were used, and 4 mm skin defects were created and lesions infected with bacteria. Half of the mice in each group were treated with 254 nm UV-C twice a day for 4 days before being euthanatized. Blood samples were collected for hematological analysis, while skin samples were collected for microbiological, pathological, and immunohistochemical examinations. In addition, pathological examinations were performed on visceral organ samples. UV-C treatment caused rapid healing and complete or significant disinfection of skin lesions. Moreover, UV-C treatment reduced caspase-3 expressions in lesioned areas, according to immunochemistry. There were no pathological findings in visceral organs as a result of UV-C treatment. This study found that UV-C can be used to treat and disinfect infected skin lesions in short period and repeated doses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA