Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol Rep ; 9: 914-926, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875257

RESUMO

Cytotoxic effects of the market leading broad-spectrum, synthetic herbicide product Roundup Classic, its active ingredient glyphosate (in a form of its isopropylamine (IPA) salt) and its formulating surfactant polyethoxylated tallowamine (POE-15) were determined on two murine cell lines, a neuroectodermal stem cell-like (NE-4C) and a high alkaline phosphatase activity osteoblastic cell line (MC3T3-E1). Cytotoxicity, genotoxicity, effects on cell viability and cell cycles were examined in five flow cytometry tests, the two former of which were compared by the enzymatic-assay and the alkaline single cell gel electrophoresis (Comet) assay. All of the tests indicated the NE-4C cells being more sensitive, than the MC3T3-E1 cell line to the treatments with the target compounds. Higher sensitivity differences were detected in the viability test by flow cytometry (7-9-fold), than by the MTT assay (1.5-3-fold); in the genotoxicity test by the Comet assay (3.5-403-fold), than by the DNA-damage test (9.3-158-fold); and in the apoptosis test by the Annexin V dead cell kit (1.1-12.7-fold), than by the Caspase 3/7 kit (1-6.5-fold). Cell cycle assays indicated high count of cells (~70%) in the G0/G1 phase for MC3T3-E1 cells, than in NE-4C cell (~40%) after 24 h. The order of the inhibitory potency of the target substances has unequivocally been POE-15 > Roundup Classic > > glyphosate IPA salt.

2.
J Hazard Mater ; 351: 80-89, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29518655

RESUMO

Rapid and inexpensive biosensor technologies allowing real-time analysis of biomolecular and cellular events have become the basis of next-generation cell-based screening techniques. Our work opens up novel opportunities in the application of the high-throughput label-free Epic BenchTop optical biosensor in cell toxicity studies. The Epic technology records integrated cellular responses about changes in cell morphology and dynamic mass redistribution of cellular contents at the 100-150 nm layer above the sensor surface. The aim of the present study was to apply this novel technology to identify the effect of the herbicide Roundup Classic, its co-formulant polyethoxylated tallow amine (POEA), and its active ingredient glyphosate, on MC3T3-E1 cells adhered on the biosensor surface. The half maximal inhibitory concentrations of Roundup Classic, POEA and glyphosate upon 1 h of exposure were found to be 0.024%, 0.021% and 0.163% in serum-containing medium and 0.028%, 0.019% and 0.538% in serum-free conditions, respectively (at concentrations equivalent to the diluted Roundup solution). These results showed a good correlation with parallel end-point assays, demonstrating the outstanding utility of the Epic technique in cytotoxicity screening, allowing not only high-throughput, real-time detection, but also reduced assay run time and cytotoxicity assessment at end-points far before cell death would occur.


Assuntos
Técnicas Biossensoriais , Glicina/análogos & derivados , Herbicidas/toxicidade , Polietilenoglicóis/toxicidade , Tensoativos/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glicina/toxicidade , Camundongos , Fenômenos Ópticos , Xenobióticos/toxicidade , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA