Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Environ Toxicol ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365032

RESUMO

Many studies have focused on the neurotoxic effects of single metals, while investigation on the exposure to metal mixtures, which mainly occur in real-life situations, is scarce. This study sought to assess the neurotoxic effect of Ni, Co, and Pb binary mixtures and their individual effects in hippocampal neuronal cells (HT-22). Cells were exposed to Ni, Co, and Pb separately for 48 h at 37°C and 5% CO2, and cell viability was assessed. Morphological assessment of the cells exposed to binary mixtures of Co, Ni, and Pb and single metals was assessed using a microscope. Furthermore, acetylcholinesterase (AChE) activity, oxidative stress biomarkers (glutathione [GSH] and malondialdehyde [MDA] levels, catalase [CAT], and glutathione-S transferase [GST] activities) and nitric oxide [NO] levels were evaluated after treatment with the binary mixtures and single metals. Binary mixtures of the metals reduced cell viability, exerting an additivity action. The combinations also exerted synergistic action, as revealed by the combination index. Furthermore, a significant reduction in AChE activity, GSH levels, CAT and GST activities, and high MDA and NO levels were observed in neuronal cells. The additive interactions and synergistic actions of the binary mixtures might contribute to the significant reduction of AChE activity, GSH levels, GST, and CAT activities, and an increase in MDA and NO levels. The findings from this study revealed significant evidence that binary mixtures of Co, Pb, and Ni may induce impaired neuronal function and, ultimately, neurodegeneration.

2.
Heliyon ; 10(15): e35729, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170471

RESUMO

Over 90 % of all cases of diabetes that have been diagnosed are type 2 diabetes (T2D), a disease exacerbated by an increase in sedentary behaviour, bad eating habits, and obesity. This study investigated the antidiabetic properties of Gracilaria gracilis, using in vitro and ex vivo experimental models. The sulphated polysaccharides (SPs) from crude extracts of the seaweed powder was prepared via hot (100°C) and cold (25°C) aqueous extraction procedures before purification via an anion exchange chromatographic technique. Both the crude and purified extracts were characterised by Fourier-transform infrared spectroscopy (FT-IR), LC-MS analysis, and Nuclear Magnetic Resonance (NMR) spectroscopy. The crude cold-aqueous and purified hot-aqueous SPs from G. gracilis had the strongest α-glucosidase inhibitory effect with IC50 value of 0.15 and 0.07 mg/ml, respectively. The purified cold-aqueous SP was the most potent inhibitor of α-glucosidase with an IC50 value of 0.17 mg/ml. The crude and purified SP-rich extracts inhibited pancreatic lipase (hot aqueous SP = 0.03 mg/ml) activity and effectively stimulated glucose uptake in yeast cells. Moreover, they showed significantly (p < 0.05) better intestinal glucose absorption inhibitory properties at the highest concentration (1 mg/ml) and displayed significantly (p < 0.05) better muscle glucose uptake compared to the commercial antidiabetic drug, metformin, at the same concentration. Overall, the current findings indicate that G. gracilis SPs may inhibit carbohydrate-hydrolysing enzymes, limit the release of simple sugars from the gut whilst effectively stimulating the use of glucose by peripheral tissue thus may be suitable to develop antidiabetic food supplements after further animal and clinical trials.

3.
Environ Monit Assess ; 196(8): 746, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023654

RESUMO

The occurrence and persistence of rotaviruses in raw and treated wastewater and their discharge into rivers represent a significant health risk for humans and animals, worldwide. In this study, samples were collected monthly from each of the four Durban wastewater treatment plants (DWWTPs) and receiving rivers for a period of 3 months. Rotavirus was quantified by real-time quantitative PCR (RT-qPCR), and viability was assessed using integrated cell culture (ICC)-qPCR. Rotavirus was detected consistently in 100% of influent wastewaters (mean concentration range, 4.36-4.46 log10 genome equivalent (GE) copies/L) and final effluent samples of three DWWTPs (range, 3.35-3.61 log10 GE copies/L). Overall, 94% (45/48) of the wastewater analyzed and 95% (20/21) of the associated river water samples were positive for rotavirus (range, 2.04-6.77 log10 GE copies/L). The activated sludge process with 0.10-0.43 log10 reduction values (LRV) only moderately reduced the viral loads. Similarly, one of the DWWTPs that operated the biofilter modality produced 0.20 LRV. Though the additional treatment with chlorine produced higher LRV (range, 0.31-0.53) than the corresponding activated sludge or biofilter process, the difference in viral removals was not significant (p > 0.05). The equivalent treatment efficiencies of the four DWWTPs varied from 19 to 43% decay in the population of rotavirus. Further, infectious rotavirus ranging from 66.67 to 100%, 50 to 100%, and 66.67 to 100% were detected in the post-activated sludge, final effluents, and river water samples, respectively. In conclusion, the findings of infectious rotavirus in both the final effluents and associated rivers represent an infection risk for humans or animals during contact. Thus, close monitoring for rotavirus and risk assessment studies under distinct exposure scenarios may further shed light on the health-related risks associated with water recovery and reuse in urban settings.


Assuntos
Monitoramento Ambiental , Rotavirus , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/virologia , África do Sul , Humanos , Eliminação de Resíduos Líquidos/métodos , Rios/virologia , Rios/química , Esgotos/virologia , Purificação da Água/métodos
4.
Food Environ Virol ; 16(3): 363-379, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38914870

RESUMO

Globally, rotavirus continues to be the leading etiology of severe pediatric gastroenteritis, and transmission of the disease via environmental reservoirs has become an emerging concern in developing countries. From August to October 2021, a total of 69 samples comprising 48 of raw and treated sewage, and 21 surface waters, were collected from four Durban wastewater treatment plants (DWWTP), and effluent receiving rivers, respectively. Rotaviruses recovered and identified from the samples were subjected to sequencing, genotyping, and phylogenetic analysis. Of the 65 (94.2%) rotavirus-positive samples, 33.3% were from raw sewage, 16% from activated sludge, 15.9% from final effluents, and 29.0% were from the receiving river samples. A total of 49 G and 41 P genotypes were detected in sewage while 15 G and 22 P genotypes were detected in river samples. G1 genotype predominated in sewage (24.5%) followed by G3 (22.4%), G2 (14.3%), G4 (12.2%), G12 (10.2%), G9 (8.2%), and G8 (6.1%). Similarly, G1 predominated in river water samples (33.3%) and was followed by G2, G4 (20.0% each), G3, and G12 (13.3% each). Rotavirus VP4 genotypes P[4], P[6], and P[8] accounted for 36.6%, 29.3%, and 9.8%, respectively, in sewage. Correspondingly, 45.5%, 31.8%, and 13.6% were detected in river samples. The G and P genotypes not identified by the methods used were 2.1% versus 24.3% and 0.1% versus 9.1% for sewage and river water samples, respectively. Sequence comparison studies indicated a high level of nucleotide identity in the G1, G2, G3, G4, G8 VP7, and P[4], P[6], and P[8] VP4 gene sequences between strains from the environment and those from patients in the region. This is the first environmental-based study on the G and P genotypes diversity of rotavirus in municipal wastewater and their receiving rivers in this geographical region. The high similarity between environmental and clinical rotavirus strains suggests both local circulation of the virus and potential exposure risks. In addition, it highlights the usefulness of sewage surveillance as an additional tool for an epidemiological investigation, especially in populations that include individuals with subclinical or asymptomatic infections that are precluded in case-based studies.


Assuntos
Genótipo , Filogenia , Rios , Rotavirus , Esgotos , Esgotos/virologia , Rotavirus/genética , Rotavirus/classificação , Rotavirus/isolamento & purificação , Rios/virologia , África do Sul/epidemiologia , Humanos , Infecções por Rotavirus/virologia , Infecções por Rotavirus/epidemiologia , Águas Residuárias/virologia
5.
Biodegradation ; 35(5): 769-787, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38822999

RESUMO

The persistence and ubiquity of polycyclic aromatic hydrocarbons (PAHs) in the environment necessitate effective remediation strategies. Hence, this study investigated the potential of purified Laccases, TlFLU1L and TpFLU12L, from two indigenous fungi Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12), respectively for the oxidation and detoxification of anthracene. Anthracene was degraded with vmax values of 3.51 ± 0.06 mg/L/h and 3.44 ± 0.06 mg/L/h, and Km values of 173.2 ± 0.06 mg/L and 73.3 ± 0.07 mg/L by TlFLU1L and TpFLU12L, respectively. The addition of a mediator compound 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) to the reaction system significantly increased the degradation of anthracene, with up to a 2.9-fold increase in vmax value and up to threefold decrease in Km values of TlFLU1L and TpFLU12L. The GC-MS analysis of the metabolites suggests that anthracene degradation follows one new pathway unique to the ABTS system-hydroxylation and carboxylation of C-1 and C-2 position of anthracene to form 3-hydroxy-2-naphthoic acid, before undergoing dioxygenation and side chain removal to form chromone which was later converted into benzoic acid and CO2. This pathway contrasts with the common dioxygenation route observed in the free Laccase system, which is observed in the second degradation pathways. Furthermore, toxicity tests using V. parahaemolyticus and HT-22 cells, respectively, demonstrated the non-toxic nature of Laccase-ABTS-mediated metabolites. Intriguingly, analysis of the expression level of Alzheimer's related genes in HT-22 cells exposed to degradation products revealed no induction of neurotoxicity unlike untreated cells. These findings propose a paradigm shift for bioremediation by highlighting the Laccase-ABTS system as a promising green technology due to its efficiency with the discovery of a potentially less harmful degradation pathway, and the production of non-toxic metabolites.


Assuntos
Antracenos , Biodegradação Ambiental , Lacase , Talaromyces , Lacase/metabolismo , Antracenos/metabolismo , Talaromyces/enzimologia , Trichoderma/enzimologia , Animais , Proteínas Fúngicas/metabolismo
6.
Plant Methods ; 20(1): 94, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898477

RESUMO

BACKGROUND: Salt tolerance in plants is defined as their ability to grow and complete their life cycle under saline conditions. Staple crops have limited salt tolerance, but forage grass can survive in large unexploited saline areas of costal or desert land. However, due to the restriction of self-incompatible fertilization in many grass species, vegetative propagation via stem cuttings is the dominant practice; this is incompatible with current methodologies of salt-tolerance phenotyping, which have been developed for germination-based seedling growth. Therefore, the performance of seedlings from cuttings under salt stress is still fuzzy. Moreover, the morphological traits involved in salt tolerance are still mostly unknown, especially under experimental conditions with varying levels of stress. RESULTS: To estimate the salt tolerance of cutting propagation-dependent grasses, a reliable and low-cost workflow was established with multiple saline treatments, using Paspalum vaginatum as the material and substrate as medium, where cold stratification and selection of stem segments were the two variables used to control for experimental errors. Average leaf number (ALN) was designated as the best criterion for evaluating ion-accumulated salt tolerance. The reliability of ALN was revealed by the consistent results among four P. vaginatum genotypes, and three warm-season (pearl millet, sweet sorghum, and wild maize) and four cold-season (barley, oat, rye, and ryegrass) forage cultivars. Dynamic curves simulated by sigmoidal mathematical models were well-depicted for the calculation of the key parameter, Salt50. The reliability of the integrated platform was further validated by screening 48 additional recombinants, which were previously generated from a self-fertile mutant of P. vaginatum. The genotypes displaying extreme ALN-based Salt50 also exhibited variations in biomass and ion content, which not only confirmed the reliability of our phenotyping platform but also the representativeness of the aerial ALN trait for salt tolerance. CONCLUSIONS: Our phenotyping platform is proved to be compatible with estimations in both germination-based and cutting propagation-dependent seedling tolerance under salt stresses. ALN and its derived parameters are prone to overcome the species barriers when comparing salt tolerance of different species together. The accuracy and reliability of the developed phenotyping platform is expected to benefit breeding programs in saline agriculture.

7.
Appl Microbiol Biotechnol ; 108(1): 359, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836885

RESUMO

Vacuum foam drying (VFD) has been shown to improve the thermostability and long-term shelf life of Newcastle Disease Virus (NDV). This study optimized the VFD process to improve the shelf life of NDV at laboratory-scale and then tested the optimized conditions at pilot-scale. The optimal NDV to T5 formulation ratio was determined to be 1:1 or 3:2. Using the 1:1 virus to formulation ratio, the optimal filling volumes were determined to be 13-17% of the vial capacity. The optimized VFD process conditions were determined to be at a shelf temperature of 25℃ with a minimum overall drying time of 44 h. The vaccine samples prepared using these optimized conditions at laboratory-scale exhibited virus titer losses of ≤ 1.0 log10 with residual moisture content (RMC) below 3%. Furthermore, these samples were transported for 97 days around China at ambient temperature without significant titer loss, thus demonstrating the thermostability of the NDV-VFD vaccine. Pilot-scale testing of the NDV-VFD vaccine at optimized conditions showed promising results for up-scaling the process as the RMC was below 3%. However, the virus titer loss was slightly above 1.0 log10 (approximately 1.1 log10). Therefore, the NDV-VFD process requires further optimization at pilot scale to obtain a titer loss of ≤ 1.0 log10. Results from this study provide important guidance for possible industrialization of NDV-VFD vaccine in the future. KEY POINTS: • The process optimization and scale-up test of thermostable NDV vaccine prepared through VFD is reported for the first time in this study. • The live attenuated NDV-VFD vaccine maintained thermostability for 97 days during long distance transportation in summer without cold chain conditions. • The optimized NDV-VFD vaccine preparations evaluated at pilot-scale maintained acceptable levels of infectivity after preservation at 37℃ for 90 days, which demonstrated the feasibility of the vaccine for industrialization.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Temperatura , Vacinas Virais , Vírus da Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/química , Projetos Piloto , Doença de Newcastle/prevenção & controle , Doença de Newcastle/virologia , Vacinas Virais/química , Vacinas Virais/imunologia , Vácuo , Animais , Galinhas , Dessecação , China , Estabilidade de Medicamentos , Carga Viral
8.
Sci Rep ; 14(1): 13371, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862560

RESUMO

Broad-spectrum biocatalysts enzymes, Laccases, have been implicated in the complete degradation of harmful pollutants into less-toxic compounds. In this study, two extracellularly produced Laccases were purified to homogeneity from two different Ascomycetes spp. Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12). The purified enzymes are monomeric units, with a molecular mass of 44 kDa and 68.7 kDa for TlFLU1 and TpFLU12, respectively, on SDS-PAGE and zymogram. It reveals distinct properties beyond classic protein absorption at 270-280 nm, with TlFLU1's peak at 270 nm aligning with this typical range of type II Cu site (white Laccase), while TpFLU12's unique 600 nm peak signifies a type I Cu2+ site (blue Laccase), highlighting the diverse spectral fingerprints within the Laccase family. The Km and kcat values revealed that ABTS is the most suitable substrate as compared to 2,6-dimethoxyphenol, caffeic acid and guaiacol for both Laccases. The bioinformatics analysis revealed critical His, Ile, and Arg residues for copper binding at active sites, deviating from the traditional two His and a Cys motif in some Laccases. The predicted biological functions of the Laccases include oxidation-reduction, lignin metabolism, cellular metal ion homeostasis, phenylpropanoid catabolism, aromatic compound metabolism, cellulose metabolism, and biological adhesion. Additionally, investigation of degradation of polycyclic aromatic hydrocarbons (PAHs) by purified Laccases show significant reductions in residual concentrations of fluoranthene and anthracene after a 96-h incubation period. TlFLU1 Laccase achieved 39.0% and 44.9% transformation of fluoranthene and anthracene, respectively, while TpFLU12 Laccase achieved 47.2% and 50.0% transformation, respectively. The enzyme structure-function relationship study provided insights into the catalytic mechanism of these Laccases for possible biotechnological and industrial applications.


Assuntos
Lacase , Talaromyces , Trichoderma , Talaromyces/enzimologia , Lacase/metabolismo , Lacase/química , Lacase/isolamento & purificação , Lacase/genética , Trichoderma/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/genética , Especificidade por Substrato , Cobre/metabolismo , Cinética , Oxirredutases/metabolismo , Oxirredutases/química , Oxirredutases/isolamento & purificação , Domínio Catalítico
9.
Plants (Basel) ; 13(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256818

RESUMO

This study reports on the effects of pretreated biogas slurry on degraded farm soil properties, microflora and the production of Capsicum spp. The responses of soil properties, microorganisms and Capsicum spp. production to biogas slurry pretreated soil were determined. The biogas slurry pretreatment of degraded soil increases the total nitrogen (0.15-0.32 g/kg), total phosphorus (0.13-0.75 g/kg), available phosphorus (102.62-190.68 mg/kg), available potassium (78.94-140.31 mg/kg), organic carbon content (0.67-3.32 g/kg) and pH value of the soil, while the population, diversity and distribution of soil bacteria and fungi were significantly affected. Interestingly, soil ammonium nitrogen, soil pH and soil nitrate nitrogen were highly correlated with the population of bacteria and fungi present in the pretreated soil. The soil with biogas slurry pretreatment of 495 m3/hm2 favored the seedling survival rate, flowering rate and fruit-bearing rate of Capsicum spp. and significantly reduced the rate of rigid seedlings. In this study, the application of 495 m3/hm2 biogas slurry to pretreat degraded soil has achieved the multiple goals of biogas slurry valorization, soil biofertilization and preventing and controlling plant diseases caused by soil-borne pathogenic microorganisms. These findings are of significant importance for the safe and environmentally friendly application of biogas slurry for soil pretreatment.

10.
Biodegradation ; 35(1): 71-86, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37052742

RESUMO

This study presents the effect of ultra-violet (UV) light radiation on the process kinetics, metabolic performance, and biodegradation capability of Scenedesmus vacuolatus. The impact of the UV radiation on S. vacuolatus morphology, chlorophyll, carotenoid, carbohydrates, proteins, lipid accumulation, growth rate, substrate affinity and substrate versatility were evaluated. Thereafter, a preliminary biodegradative potential of UV-exposed S. vacuolatus on spent coolant waste (SCW) was carried out based on dehydrogenase activity (DHA) and total petroleum hydrocarbon degradation (TPH). Pronounced structural changes were observed in S. vacuolatus exposed to UV radiation for 24 h compared to the 2, 4, 6, 12 and 48 h UV exposure. Exposure of S. vacuolatus to UV radiation improved cellular chlorophyll (chla = 1.89-fold, chlb = 2.02-fold), carotenoid (1.24-fold), carbohydrates (4.62-fold), proteins (1.44-fold) and lipid accumulations (1.40-fold). In addition, the 24 h UV exposed S. vacuolatus showed a significant increase in substrate affinity (1/Ks) (0.959), specific growth rate (µ) (0.024 h-1) and biomass accumulation (0.513 g/L) by 1.50, 2 and 1.9-fold respectively. Moreover, enhanced DHA (55%) and TPH (100%) degradation efficiency were observed in UV-exposed S. vacuolatus. These findings provided major insights into the use of UV radiation to enhance S. vacuolatus biodegradative performance towards sustainable green environment negating the use of expensive chemicals and other unfriendly environmental practices.


Assuntos
Scenedesmus , Raios Ultravioleta , Scenedesmus/metabolismo , Clorofila/metabolismo , Clorofila/farmacologia , Carotenoides/metabolismo , Carotenoides/farmacologia , Carboidratos/farmacologia , Lipídeos/farmacologia , Biodegradação Ambiental
11.
JAC Antimicrob Resist ; 5(6): dlad127, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38089461

RESUMO

The escalating problem of antimicrobial resistance (AMR) proliferation in clinically important pathogens has become one of the biggest threats to human health and the global economy. Previous studies have estimated AMR-associated deaths and disability-adjusted life-years (DALYs) in many countries with a view to presenting a clearer picture of the global burden of AMR-related diseases. Recently, several novel strategies have been advanced to combat resistance spread. These include efflux activity inhibition, closing of mutant selection window (MSW), biofilm disruption, lytic bacteriophage particles, nanoantibiotics, engineered antimicrobial peptides, and the CRISPR-Cas9 gene-editing technique. The single or integrated deployment of these strategies has shown potentialities towards mitigating resistance and contributing to valuable therapeutic outcomes. Correspondingly, the new paradigm of personalized medicine demands innovative interventions such as improved and accurate point-of-care diagnosis and treatment to curtail AMR. The CRISPR-Cas system is a novel and highly promising nucleic acid detection and manipulating technology with the potential for application in the control of AMR. This review thus considers the specifics of some of the AMR-mitigating strategies, while noting their drawbacks, and discusses the advances in the CRISPR-based technology as an important point-of-care tool for tracking and curbing AMR in our fight against a looming 'post-antibiotic' era.

12.
Microorganisms ; 11(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38004687

RESUMO

Biogas slurry (BS) is an attractive agricultural waste resource which can be used to regulate soil microbial communities, enhance nutrient absorption capacity of crops, promote plant-soil interactions, and consequently, increase crop productivity. Presently, BS discharge is not environmentally friendly. It is therefore necessary to explore alternative efficient utilization of BS. The use of BS as fertilizer meets the requirements for sustainable and eco-friendly development in agriculture, but this has not been fully actualized. Hence, this paper reviewed the advantages of using BS in farmland as soil fertilization for the improvement of crop production and quality. This review also highlighted the potential of BS for the prevention and control of soil acidification, salinization, as well as improve microbial structure and soil enzyme activity. Moreover, this review reports on the current techniques, application methods, relevant engineering measures, environmental benefits, challenges, and prospects associated with BS utilization. Lastly, additional research efforts require for optimal utilization of BS in farmlands were elucidated.

13.
Plant Dis ; 107(4): 1060-1066, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36122196

RESUMO

The present study was performed to evaluate the effect of crop rotation on Fusarium mycotoxins and species in cereals in Sichuan Province. A total of 311 cereal samples were randomly collected and analyzed from 2018 to 2019 in Sichuan Province. The results of mycotoxin analysis showed that the major trichothecene mycotoxins in Sichuan Province were nivalenol (NIV) and deoxynivalenol (DON), and the mean concentration of total trichothecenes (including NIV, fusarenone X [4ANIV], DON, 3-acetyldeoxynivalenol [3ADON], and 15-acetyldeoxynivalenol [15ADON]) in wheat was significantly higher than that in maize and rice. The concentration of total trichothecenes in the succeeding crops was significantly higher than that in the previous crops. In addition, wheat grown after maize had reduced incidence and concentration of trichothecene mycotoxins compared with that grown after rice, and ratooning rice grown after rice had increased incidence and concentration of trichothecene mycotoxins. Our data indicated that Fusarium asiaticum with the NIV chemotype was predominant in wheat and rice samples, while the number of the NIV chemotypes of F. asiaticum and Fusarium meridionale and the 15ADON chemotype of Fusarium graminearum in maize were almost the same. Although the composition of Fusarium species was affected by crop rotations, there were no differences when comparing the same crop rotation except for the maize-wheat rotation. Moreover, the same species and chemotype of Fusarium strains originated from different crops in various rotations, but there were no significant differences in pathogenicity in wheat and rice. These results contribute to the knowledge of the effect of crop rotation on Fusarium mycotoxins and species affecting cereals in Sichuan Province, which may lead to improved strategies for control of Fusarium mycotoxins and fungal disease in China.


Assuntos
Fusarium , Micotoxinas , Oryza , Tricotecenos , Grão Comestível/microbiologia , Produtos Agrícolas , China , Triticum/microbiologia , Oryza/microbiologia , Produção Agrícola
14.
Inflammopharmacology ; 31(1): 231-240, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36436183

RESUMO

BACKGROUND: In this study, we summarized the preclinical investigations of the neuroprotective activities of Hibiscus sabdariffa (HSD) extract via its effect on memory function, neuroinflammation and oxidative damage in the central nervous system, which may help to guide future studies. METHODS: Preclinical studies that investigated the effect of HSD extract on memory impairment, neuroinflammation and oxidative stress-induced neuronal damage were searched systematically in PubMed, EBSCOhost (including MEDLINE, CINAHL, APA PsycInfo, etc.), Web of Science (WoS) and Scopus. Parameters and indexes included Morris water maze, passive avoidance test, acetylcholinesterase activity, interleukin 1 (IL-1), tumour necrosis factor-alpha (TNF-α), MAPK, malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS) and mitochondria membrane potential (MMP). RESULTS: A total of 285 documents were identified; however, only ten articles were included and used for meta-analysis. The meta-analytic outcome revealed that HSD did not show any significant effect on memory function, neuroinflammatory biomarkers (IL-1, MAPK) and oxidative stress (GSH, MDA, ROS and MMP) in neuronal cells and tissues. CONCLUSIONS: Individual study revealed that HSD showed improved memory function, attenuated neuroinflammation and prevented oxidative damage to neurons. However, a conflicting result was observed from the meta-analytic outcomes which showed that HSD has no significant effect on cognitive impairment, neuroinflammation and oxidative stress-induced neuronal damage. However the contradiction in this finding may be associated with small number of studies included. Hence, more studies on the memory-enhacing effects and anti-neuroinflammatory activity of HSD in preclinical and clinical model are required to validate its neuroprotective effect.


Assuntos
Hibiscus , Poríferos , Animais , Antioxidantes/farmacologia , Hibiscus/metabolismo , Espécies Reativas de Oxigênio , Acetilcolinesterase/metabolismo , Doenças Neuroinflamatórias , Estresse Oxidativo , Extratos Vegetais/farmacologia , Glutationa
15.
AAPS PharmSciTech ; 23(8): 291, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319901

RESUMO

Vaccines used for managing Newcastle disease virus (NDV) rely heavily on cold chain, and this results in major constraints in their successful application, shipping, and storage. This study was undertaken to improve the thermotolerance properties of live attenuated NDV vaccines using vacuum foam drying (VFD) technology. The live attenuated NDV vaccine formulated in 15% trehalose, 2.5% gelatin, 0.05% pluronic, and 25 mmol/L potassium phosphate buffer (T5) and dried using VFD showed improved heat tolerance in comparison to the vaccine formulated in T5 as well, but dried using freeze-drying (FD) method. The T5-formulated VFD vaccine was stored at 37°C for 120 days, 45°C for 7 days, and 60°C for 3 days; the virus titer loss decreased by no more than 1.0 Log10. In contrast, the FD vaccine prepared in T5 could only be stored at 37°C for 7-10 days. Furthermore, the T5-formulated NDV-VFD vaccine remained infectious when heated at 100°C for 30 min. Shelf-life studies confirmed the improved thermal tolerance of the T5-formulated NDV-VFD vaccine since it could be stably stored at 2-8°C for 42 months and 25°C for 15 months. Moreover, immunization of 1-month-old specific pathogen-free (SPF) chickens with the T5-formulated NDV-VFD vaccine stored at 25 and 37°C could produce hemagglutination inhibition (HI) antibody levels comparable to those of commercial NDV-FD vaccines, which require strict adherence to the cold chain. In conclusion, not only did the VFD technology improve the thermostability and long-term shelf life of the vaccine, it also maintained its immunogenicity.


Assuntos
Galinhas , Vírus da Doença de Newcastle , Animais , Vacinas Atenuadas , Vácuo , Organismos Livres de Patógenos Específicos
16.
J Food Biochem ; 46(12): e14498, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36350831

RESUMO

This study examined the antiproliferative and apoptotic-inducing effects of Ecklonia maxima (KP) and Ulva rigida (URL) extracts in the human liver cancer (HepG2) cell line model. HepG2 cells were cultured and grown in an incubator (5% CO2 ) at 37°C. Cell viability was determined, while the effect of the extracts on apoptosis, ROS production, mitochondria membrane potential, and antioxidant enzymes were also assessed. KP and URL induced cytotoxic effects on HepG2 cells at the concentrations tested (0-1000 µg/ml). The morphological characteristics of the cells after treatment with KP and URL revealed cell shrinkage of the nucleus, cell injury, and damage compared to the control. The fluorescent micrographs from the apoptotic assay revealed induction of apoptosis and necrosis in HepG2 cells after treatment with KP and URL (200 and 400 µg/ml). The extracts also induced ROS production and reduced mitochondria membrane potential in HepG2 cells. The apoptotic-inducing effects, activation of ROS generation, and disruption of antioxidant enzymes are associated with the cytotoxic effects of the seaweed extracts. KP and URL showed good anticancer properties and could be explored as a good source of nutraceuticals, food additives, and dietary supplements to prevent uncontrolled proliferation of HepG2 cells. PRACTICAL APPLICATIONS: Seaweeds are reservoirs of nutrients and naturally occurring biologically active compounds, including sterols, phlorotannins, and polyunsaturated fatty acids. Due to the presence of these compounds, they are used as emulsifying agents, nutraceuticals, and additives in functional foods. Evidence suggests that seaweed bioactives may inhibit uncontrolled cell proliferation and induce apoptosis in cancer cells. Hence, exploring the antiproliferative and apoptotic-inducing effects of Ecklonia maxima and Ulva rigida will provide insights into their anticancer potentials as functional foods and nutraceuticals.


Assuntos
Phaeophyceae , Alga Marinha , Ulva , Humanos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células Hep G2 , Extratos Vegetais/farmacologia , Apoptose , Água
17.
Expert Rev Anti Infect Ther ; 20(12): 1587-1602, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36285575

RESUMO

INTRODUCTION: Human rotavirus remains a major etiology of acute gastroenteritis among under 5-year children worldwide despite the availability of oral vaccines. The genetic instability of rotavirus and the ability to form different combinations from the different G- and P-types reshapes the antigenic landscape of emerging strains which often display limited or no antigen identities with the vaccine strain. As evidence also suggests, the selection of the antigenically distinct novel or rare strains and their successful spread in the human population has raised concerns regarding undermining the effectiveness of vaccination programs. AREAS COVERED: We review aspects related to current knowledge about genetic and antigenic heterogeneity of rotavirus, the mechanism of genetic diversity and evolution, and the implication of genetic change on vaccination. EXPERT OPINION: Genetic changes in the segmented genome of rotavirus can alter the antigenic landscape on the virion capsid and further promote viral fitness in a fully vaccinated population. Against this background, the potential risk of the appearance of new rotavirus strains over the long term would be better predicted by a continued and increased close monitoring of the variants across the globe to identify any change associated with disease dynamics.


Assuntos
Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Criança , Humanos , Lactente , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/prevenção & controle , Heterogeneidade Genética , Filogenia , Vacinação , Vacinas contra Rotavirus/genética , Genótipo , Variação Genética
18.
Toxicol Res ; 38(3): 365-377, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35874507

RESUMO

In this study, the modulatory effects of anthracene (ANT) and benz[a]anthracene (BEN) on biochemical markers associated with neurodegeneration were assessed in mouse hippocampal neuronal cells (HT-22). Neuronal cells were cultured and exposed to ANT and BEN (25-125 µM) for 5 days, and the cell viability was determined via MTT assay. Morphological characteristics of the cells were assessed using a compound microscope. Biochemical parameters such as acetylcholinesterase (AChE), monoamine oxidase (MAO) and adenosine deaminase (ADA) activities as well as oxidative stress biomarkers (catalase [CAT], glutathione -S- transferase [GST] activities and Glutathione [GSH] levels) and nitric oxide [NO] levels were assessed after cells were treated with ANT and BEN for two days. The results showed that cell viability reduced with an increase in exposure time. After the fifth day of treatment, BEN and ANT (125 µM) reduced percentage viability to 41 and 38.1%, respectively. Light micrographs showed shrinkage of cells, neuronal injury and cell death in cells treated with higher concentrations of BEN and ANT (50 and 125 µM). Furthermore, AChE and MAO activities reduced significantly after treatment for 48 h with ANT and BEN. A significant decrease in CAT and GST activities and low GSH levels were observed after treatment with BEN and ANT. However, both polycyclic aromatic hydrocarbons caused a significant increase in ADA activity and NO levels. These results suggest that ANT and BEN may induce neurodegeneration in neuronal cells via oxidative stress-induced-neuronal injury, disruption of cholinergic, monoaminergic and purinergic transmission, and increased nitric oxide levels.

19.
Toxics ; 10(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35893850

RESUMO

Several studies present the neurotoxic effects of polycyclic aromatic hydrocarbons (PAHs), a class of environmental pollutants capable of causing neurological deficits. However, a collective review approach to this research topic is scarce. This study presents the effect of PAHs on the central nervous system using a bibliometric approach. The neuropathological mechanisms of PAHs are also highlighted. Published articles were searched for in the Scopus and Web of Science databases from January 1979 to December 2020 using the keywords 'polycyclic aromatic hydrocarbons' and 'neurotoxicity'. The total number of documents retrieved from both databases was 338. Duplicated documents (80) were excluded and 258 articles were used for the final analysis. Our findings revealed that there has been a significant increase in research outputs on this topic in the last ten years. The countries with the highest scientific productivity in this area are USA, China, France and Italy. The result also showed that, in the past few years, global scientific output in research relating to PAH neurotoxicity focused on neurodegeneration, cholinergic function, neurodevelopmental toxicity, behavioural studies, oxidative stress, neuroprotection and therapeutic intervention using different experimental models, including zebrafish, neuronal cell lines, Caenorhabditis elegans and rats. Recent studies also revealed the neuroprotective roles of some natural products against PAH-induced neurotoxicity. However, more investigation involving clinical trials is required to emphasize the observed neurotoxic effects.

20.
Viruses ; 14(5)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35632617

RESUMO

Since their first recognition in human cases about four decades ago, rotaviruses have remained the leading cause of acute severe dehydrating diarrhea among infants and young children worldwide. The WHO prequalification of oral rotavirus vaccines (ORV) a decade ago and its introduction in many countries have yielded a significant decline in the global burden of the disease, although not without challenges to achieving global effectiveness. Poised by the unending malady of rotavirus diarrhea and the attributable death cases in developing countries, we provide detailed insights into rotavirus biology, exposure pathways, cellular receptors and pathogenesis, host immune response, epidemiology, and vaccination. Additionally, recent developments on the various host, viral and environmental associated factors impacting ORV performance in low-and middle-income countries (LMIC) are reviewed and their significance assessed. In addition, we review the advances in nonvaccine strategies (probiotics, candidate anti-rotaviral drugs, breastfeeding) to disease prevention and management.


Assuntos
Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Criança , Pré-Escolar , Diarreia , Humanos , Lactente , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/uso terapêutico , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA