Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur J Trauma Emerg Surg ; 49(2): 1057-1069, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36374292

RESUMO

PURPOSE: Convolutional neural networks (CNNs) are increasingly being developed for automated fracture detection in orthopaedic trauma surgery. Studies to date, however, are limited to providing classification based on the entire image-and only produce heatmaps for approximate fracture localization instead of delineating exact fracture morphology. Therefore, we aimed to answer (1) what is the performance of a CNN that detects, classifies, localizes, and segments an ankle fracture, and (2) would this be externally valid? METHODS: The training set included 326 isolated fibula fractures and 423 non-fracture radiographs. The Detectron2 implementation of the Mask R-CNN was trained with labelled and annotated radiographs. The internal validation (or 'test set') and external validation sets consisted of 300 and 334 radiographs, respectively. Consensus agreement between three experienced fellowship-trained trauma surgeons was defined as the ground truth label. Diagnostic accuracy and area under the receiver operator characteristic curve (AUC) were used to assess classification performance. The Intersection over Union (IoU) was used to quantify accuracy of the segmentation predictions by the CNN, where a value of 0.5 is generally considered an adequate segmentation. RESULTS: The final CNN was able to classify fibula fractures according to four classes (Danis-Weber A, B, C and No Fracture) with AUC values ranging from 0.93 to 0.99. Diagnostic accuracy was 89% on the test set with average sensitivity of 89% and specificity of 96%. External validity was 89-90% accurate on a set of radiographs from a different hospital. Accuracies/AUCs observed were 100/0.99 for the 'No Fracture' class, 92/0.99 for 'Weber B', 88/0.93 for 'Weber C', and 76/0.97 for 'Weber A'. For the fracture bounding box prediction by the CNN, a mean IoU of 0.65 (SD ± 0.16) was observed. The fracture segmentation predictions by the CNN resulted in a mean IoU of 0.47 (SD ± 0.17). CONCLUSIONS: This study presents a look into the 'black box' of CNNs and represents the first automated delineation (segmentation) of fracture lines on (ankle) radiographs. The AUC values presented in this paper indicate good discriminatory capability of the CNN and substantiate further study of CNNs in detecting and classifying ankle fractures. LEVEL OF EVIDENCE: II, Diagnostic imaging study.


Assuntos
Fraturas do Tornozelo , Ortopedia , Humanos , Fraturas do Tornozelo/diagnóstico por imagem , Redes Neurais de Computação , Radiografia , Fíbula/diagnóstico por imagem
3.
Bone Joint J ; 104-B(8): 911-914, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35909378

RESUMO

Artificial intelligence (AI) is, in essence, the concept of 'computer thinking', encompassing methods that train computers to perform and learn from executing certain tasks, called machine learning, and methods to build intricate computer models that both learn and adapt, called complex neural networks. Computer vision is a function of AI by which machine learning and complex neural networks can be applied to enable computers to capture, analyze, and interpret information from clinical images and visual inputs. This annotation summarizes key considerations and future perspectives concerning computer vision, questioning the need for this technology (the 'why'), the current applications (the 'what'), and the approach to unlocking its full potential (the 'how'). Cite this article: Bone Joint J 2022;104-B(8):911-914.


Assuntos
Inteligência Artificial , Ortopedia , Computadores , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
4.
Bone Jt Open ; 2(10): 879-885, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34669518

RESUMO

AIMS: The number of convolutional neural networks (CNN) available for fracture detection and classification is rapidly increasing. External validation of a CNN on a temporally separate (separated by time) or geographically separate (separated by location) dataset is crucial to assess generalizability of the CNN before application to clinical practice in other institutions. We aimed to answer the following questions: are current CNNs for fracture recognition externally valid?; which methods are applied for external validation (EV)?; and, what are reported performances of the EV sets compared to the internal validation (IV) sets of these CNNs? METHODS: The PubMed and Embase databases were systematically searched from January 2010 to October 2020 according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The type of EV, characteristics of the external dataset, and diagnostic performance characteristics on the IV and EV datasets were collected and compared. Quality assessment was conducted using a seven-item checklist based on a modified Methodologic Index for NOn-Randomized Studies instrument (MINORS). RESULTS: Out of 1,349 studies, 36 reported development of a CNN for fracture detection and/or classification. Of these, only four (11%) reported a form of EV. One study used temporal EV, one conducted both temporal and geographical EV, and two used geographical EV. When comparing the CNN's performance on the IV set versus the EV set, the following were found: AUCs of 0.967 (IV) versus 0.975 (EV), 0.976 (IV) versus 0.985 to 0.992 (EV), 0.93 to 0.96 (IV) versus 0.80 to 0.89 (EV), and F1-scores of 0.856 to 0.863 (IV) versus 0.757 to 0.840 (EV). CONCLUSION: The number of externally validated CNNs in orthopaedic trauma for fracture recognition is still scarce. This greatly limits the potential for transfer of these CNNs from the developing institute to another hospital to achieve similar diagnostic performance. We recommend the use of geographical EV and statements such as the Consolidated Standards of Reporting Trials-Artificial Intelligence (CONSORT-AI), the Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence (SPIRIT-AI) and the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis-Machine Learning (TRIPOD-ML) to critically appraise performance of CNNs and improve methodological rigor, quality of future models, and facilitate eventual implementation in clinical practice. Cite this article: Bone Jt Open 2021;2(10):879-885.

5.
Acta Orthop ; 92(5): 513-525, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33988081

RESUMO

Background and purpose - Artificial intelligence (AI), deep learning (DL), and machine learning (ML) have become common research fields in orthopedics and medicine in general. Engineers perform much of the work. While they gear the results towards healthcare professionals, the difference in competencies and goals creates challenges for collaboration and knowledge exchange. We aim to provide clinicians with a context and understanding of AI research by facilitating communication between creators, researchers, clinicians, and readers of medical AI and ML research.Methods and results - We present the common tasks, considerations, and pitfalls (both methodological and ethical) that clinicians will encounter in AI research. We discuss the following topics: labeling, missing data, training, testing, and overfitting. Common performance and outcome measures for various AI and ML tasks are presented, including accuracy, precision, recall, F1 score, Dice score, the area under the curve, and ROC curves. We also discuss ethical considerations in terms of privacy, fairness, autonomy, safety, responsibility, and liability regarding data collecting or sharing.Interpretation - We have developed guidelines for reporting medical AI research to clinicians in the run-up to a broader consensus process. The proposed guidelines consist of a Clinical Artificial Intelligence Research (CAIR) checklist and specific performance metrics guidelines to present and evaluate research using AI components. Researchers, engineers, clinicians, and other stakeholders can use these proposal guidelines and the CAIR checklist to read, present, and evaluate AI research geared towards a healthcare setting.


Assuntos
Inteligência Artificial/normas , Pesquisa Biomédica , Lista de Checagem , Guias como Assunto , Projetos de Pesquisa , Humanos
6.
Acta Orthop ; 92(1): 102-108, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33103536

RESUMO

Background and purpose - Classification of ankle fractures is crucial for guiding treatment but advanced classifications such as the AO Foundation/Orthopedic Trauma Association (AO/OTA) are often too complex for human observers to learn and use. We have therefore investigated whether an automated algorithm that uses deep learning can learn to classify radiographs according to the new AO/OTA 2018 standards.Method - We trained a neural network based on the ResNet architecture on 4,941 radiographic ankle examinations. All images were classified according to the AO/OTA 2018 classification. A senior orthopedic surgeon (MG) then re-evaluated all images with fractures. We evaluated the network against a test set of 400 patients reviewed by 2 expert observers (MG, AS) independently.Results - In the training dataset, about half of the examinations contained fractures. The majority of the fractures were malleolar, of which the type B injuries represented almost 60% of the cases. Average area under the area under the receiver operating characteristic curve (AUC) was 0.90 (95% CI 0.82-0.94) for correctly classifying AO/OTA class where the most common major fractures, the malleolar type B fractures, reached an AUC of 0.93 (CI 0.90-0.95). The poorest performing type was malleolar A fractures, which included avulsions of the fibular tip.Interpretation - We found that a neural network could attain the required performance to aid with a detailed ankle fracture classification. This approach could be scaled up to other body parts. As the type of fracture is an important part of orthopedic decision-making, this is an important step toward computer-assisted decision-making.


Assuntos
Fraturas do Tornozelo/classificação , Fraturas do Tornozelo/diagnóstico por imagem , Aprendizado Profundo , Algoritmos , Humanos , Radiografia , Suécia
7.
Acta Orthop ; 88(6): 581-586, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28681679

RESUMO

Background and purpose - Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and the technology is believed to be the next technological revolution. So far it has never been applied in an orthopedic setting, and in this study we sought to determine the feasibility of using deep learning for skeletal radiographs. Methods - We extracted 256,000 wrist, hand, and ankle radiographs from Danderyd's Hospital and identified 4 classes: fracture, laterality, body part, and exam view. We then selected 5 openly available deep learning networks that were adapted for these images. The most accurate network was benchmarked against a gold standard for fractures. We furthermore compared the network's performance with 2 senior orthopedic surgeons who reviewed images at the same resolution as the network. Results - All networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view. The final accuracy for fractures was estimated at 83% for the best performing network. The network performed similarly to senior orthopedic surgeons when presented with images at the same resolution as the network. The 2 reviewer Cohen's kappa under these conditions was 0.76. Interpretation - This study supports the use for orthopedic radiographs of artificial intelligence, which can perform at a human level. While current implementation lacks important features that surgeons require, e.g. risk of dislocation, classifications, measurements, and combining multiple exam views, these problems have technical solutions that are waiting to be implemented for orthopedics.


Assuntos
Inteligência Artificial , Fraturas Ósseas/diagnóstico , Intensificação de Imagem Radiográfica , Radiografia/métodos , Humanos , Reprodutibilidade dos Testes
8.
Semin Cell Dev Biol ; 51: 44-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26851626

RESUMO

Network inference is a rapidly advancing field, with new methods being proposed on a regular basis. Understanding the advantages and limitations of different network inference methods is key to their effective application in different circumstances. The common structural properties shared by diverse networks naturally pose a challenge when it comes to devising accurate inference methods, but surprisingly, there is a paucity of comparison and evaluation methods. Historically, every new methodology has only been tested against gold standard (true values) purpose-designed synthetic and real-world (validated) biological networks. In this paper we aim to assess the impact of taking into consideration aspects of topological and information content in the evaluation of the final accuracy of an inference procedure. Specifically, we will compare the best inference methods, in both graph-theoretic and information-theoretic terms, for preserving topological properties and the original information content of synthetic and biological networks. New methods for performance comparison are introduced by borrowing ideas from gene set enrichment analysis and by applying concepts from algorithmic complexity. Experimental results show that no individual algorithm outperforms all others in all cases, and that the challenging and non-trivial nature of network inference is evident in the struggle of some of the algorithms to turn in a performance that is superior to random guesswork. Therefore special care should be taken to suit the method to the purpose at hand. Finally, we show that evaluations from data generated using different underlying topologies have different signatures that can be used to better choose a network reconstruction method.


Assuntos
Redes Reguladoras de Genes , Algoritmos , Animais , Teorema de Bayes , Entropia , Humanos , Modelos Genéticos , Genética Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA