Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Prog Neurobiol ; 202: 102069, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33933532

RESUMO

During the process of neuronal outgrowth, developing neurons produce new projections, neurites, that are essential for brain wiring. Here, we discover a relatively late-evolved protein that we denote Ac45-related protein (Ac45RP) and that, surprisingly, drives neuronal outgrowth. Ac45RP is a paralog of the Ac45 protein that is a component of the vacuolar proton ATPase (V-ATPase), the main pH regulator in eukaryotic cells. Ac45RP mRNA expression is brain specific and coincides with the peak of neurogenesis and the onset of synaptogenesis. Furthermore, Ac45RP physically interacts with the V-ATPase V0-sector and colocalizes with V0 in unconventional, but not synaptic, secretory vesicles of extending neurites. Excess Ac45RP enhances the expression of V0-subunits, causes a more elaborate Golgi, and increases the number of cytoplasmic vesicular structures, plasma membrane formation and outgrowth of actin-containing neurites devoid of synaptic markers. CRISPR-cas9n-mediated Ac45RP knockdown reduces neurite outgrowth. We conclude that the novel vertebrate- and brain-specific Ac45RP is a V0-interacting constituent of unconventional vesicular structures that drives membrane expansion during neurite outgrowth and as such may furnish a tool for future neuroregenerative treatment strategies.


Assuntos
Crescimento Neuronal , ATPases Vacuolares Próton-Translocadoras , Animais , Encéfalo/metabolismo , Neuritos/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vertebrados/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-28408291

RESUMO

Autism spectrum disorders (ASD) are a highly heterogeneous group of neurodevelopmental disorders caused by complex interplay between various genes and environmental factors during embryonic development. Changes at the molecular, cellular and neuroanatomical levels are especially evident in the medial prefrontal cortex (mPFC) of ASD patients and are particularly contributing to social impairments. In the present study we tested the hypothesis that altered neuronal development and plasticity, as seen in the mPFC of ASD individuals, may result from aberrant expression of functionally connected genes. Towards this end, we combined transcriptome sequencing and computational gene ontology analysis to identify the molecular networks impaired in the mPFC of a valproic acid (VPA) rat model of autism. This investigation identified two subsets of genes differentially expressed in the mPFC of VPA rats: one group of genes being functionally involved in the regulation of the circadian rhythm, while the second group encompasses a set of differentially expressed collagen genes acting within the extracellular matrix. Ultimately, our integrated transcriptome analysis identified a distinct subset of altered gene networks in the mPFC of VPA rats, contributing to our understanding of autism at the molecular level, thus providing novel insight into the genetic alterations associated with this neurodevelopmental disorder.


Assuntos
Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética , Ritmo Circadiano/genética , Matriz Extracelular/genética , Córtex Pré-Frontal/metabolismo , Ácido Valproico/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Ratos , Transcriptoma/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-26925706

RESUMO

MicroRNAs (miRs) are small regulatory molecules, which orchestrate neuronal development and plasticity through modulation of complex gene networks. MicroRNA-137 (miR-137) is a brain-enriched RNA with a critical role in regulating brain development and in mediating synaptic plasticity. Importantly, mutations in this miR are associated with the pathoetiology of schizophrenia (SZ), and there is a widespread assumption that disruptions in miR-137 expression lead to aberrant expression of gene regulatory networks associated with SZ. To systematically identify the mRNA targets for this miR, we performed miR-137 gain- and loss-of-function experiments in primary rat hippocampal neurons and profiled differentially expressed mRNAs through next-generation sequencing. We identified 500 genes that were bidirectionally activated or repressed in their expression by the modulation of miR-137 levels. Gene ontology analysis using two independent software resources suggested functions for these miR-137-regulated genes in neurodevelopmental processes, neuronal maturation processes and cell maintenance, all of which known to be critical for proper brain circuitry formation. Since many of the putative miR-137 targets identified here also have been previously shown to be associated with SZ, we propose that this miR acts as a critical gene network hub contributing to the pathophysiology of this neurodevelopmental disorder.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo/metabolismo , MicroRNAs/genética , Sistema Nervoso , Esquizofrenia/genética , Animais , Células Cultivadas , Embrião de Mamíferos , Ontologia Genética , Redes Reguladoras de Genes/genética , Células HEK293 , Hipocampo/citologia , Humanos , MicroRNAs/metabolismo , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Sistema Nervoso/patologia , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Transfecção
4.
J Psychiatry Neurosci ; 41(5): 342-53, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27045550

RESUMO

BACKGROUND: Altered levels of urocortin 1 (Ucn1) in the centrally projecting Edinger-Westphal nucleus (EWcp) of depressed suicide attempters or completers mediate the brain's response to stress, while the mechanism regulating Ucn1 expression is unknown. We tested the hypothesis that microRNAs (miRNAs), which are vital fine-tuners of gene expression during the brain's response to stress, have the capacity to modulate Ucn1 expression. METHODS: Computational analysis revealed that the Ucn1 3' untranslated region contained a conserved binding site for miR-326. We examined miR-326 and Ucn1 levels in the EWcp of depressed suicide completers. In addition, we evaluated miR-326 and Ucn1 levels in the serum and the EWcp of a chronic variable mild stress (CVMS) rat model of behavioural despair and after recovery from CVMS, respectively. Gain and loss of miR-326 function experiments examined the regulation of Ucn1 by this miRNA in cultured midbrain neurons. RESULTS: We found reduced miR-326 levels concomitant with elevated Ucn1 levels in the EWcp of depressed suicide completers as well as in the EWcp of CVMS rats. In CVMS rats fully recovered from stress, both serum and EWcp miR-326 levels rebounded to nonstressed levels. While downregulation of miR-326 levels in primary midbrain neurons enhanced Ucn1 expression levels, miR-326 overexpression selectively reduced the levels of this neuropeptide. LIMITATIONS: This study lacked experiments showing that in vivo alteration of miR-326 levels alleviate depression-like behaviours. We show only correlative data for miR-325 and cocaine- and amphetamine-regulated transcript levels in the EWcp. CONCLUSION: We identified miR-326 dysregulation in depressed suicide completers and characterized this miRNA as an upstream regulator of the Ucn1 neuropeptide expression in midbrain neurons.


Assuntos
Transtorno Depressivo/metabolismo , Mesencéfalo/metabolismo , MicroRNAs/metabolismo , Urocortinas/metabolismo , Adulto , Animais , Sítios de Ligação , Células Cultivadas , Doença Crônica , Simulação por Computador , Modelos Animais de Doenças , Regulação para Baixo , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ratos Wistar , Estresse Psicológico , Suicídio
5.
Cell Mol Life Sci ; 73(18): 3555-67, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27017280

RESUMO

MicroRNAs (miRs) are non-coding gene transcripts abundantly expressed in both the developing and adult mammalian brain. They act as important modulators of complex gene regulatory networks during neuronal development and plasticity. miR-181c is highly abundant in cerebellar cortex and its expression is increased in autism patients as well as in an animal model of autism. To systematically identify putative targets of miR-181c, we repressed this miR in growing cortical neurons and found over 70 differentially expressed target genes using transcriptome profiling. Pathway analysis showed that the miR-181c-modulated genes converge on signaling cascades relevant to neurite and synapse developmental processes. To experimentally examine the significance of these data, we inhibited miR-181c during rat cortical neuronal maturation in vitro; this loss-of miR-181c function resulted in enhanced neurite sprouting and reduced synaptogenesis. Collectively, our findings suggest that miR-181c is a modulator of gene networks associated with cortical neuronal maturation.


Assuntos
Axônios/metabolismo , Córtex Cerebral/metabolismo , MicroRNAs/metabolismo , Animais , Antagomirs/metabolismo , Apoptose , Células Cultivadas , Córtex Cerebral/citologia , Embrião de Mamíferos/citologia , Feminino , Redes Reguladoras de Genes , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Neurogênese , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Ratos , Ratos Wistar , Análise de Sequência de RNA , Transdução de Sinais
6.
Cell Rep ; 11(12): 1876-84, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26095359

RESUMO

Mutations affecting the levels of microRNA miR-137 are associated with intellectual disability and schizophrenia. However, the pathophysiological role of miR-137 remains poorly understood. Here, we describe a highly conserved miR-137-binding site within the mRNA encoding the GluA1 subunit of AMPA-type glutamate receptors (AMPARs) and confirm that GluA1 is a direct target of miR-137. Postsynaptic downregulation of miR-137 at the CA3-CA1 hippocampal synapse selectively enhances AMPAR-mediated synaptic transmission and converts silent synapses to active synapses. Conversely, miR-137 overexpression selectively reduces AMPAR-mediated synaptic transmission and silences active synapses. In addition, we find that miR-137 is transiently upregulated in response to metabotropic glutamate receptor 5 (mGluR5), but not mGluR1 activation. Consequently, acute interference with miR-137 function impedes mGluR-LTD expression. Our findings suggest that miR-137 is a key factor in the control of synaptic efficacy and mGluR-dependent synaptic plasticity, supporting the notion that glutamatergic dysfunction contributes to the pathogenesis of miR-137-linked cognitive impairments.


Assuntos
MicroRNAs/biossíntese , Receptor de Glutamato Metabotrópico 5/biossíntese , Receptores de AMPA/genética , Esquizofrenia/genética , Animais , Sítios de Ligação , Regulação da Expressão Gênica , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , MicroRNAs/genética , Mutação , Plasticidade Neuronal/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptor de Glutamato Metabotrópico 5/genética , Receptores de AMPA/biossíntese , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/biossíntese , Receptores de Glutamato Metabotrópico/genética , Esquizofrenia/patologia , Sinapses/genética , Sinapses/metabolismo
7.
J Biol Chem ; 287(33): 27537-46, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22736765

RESUMO

The vacuolar (H(+))-ATPase (V-ATPase) is crucial for maintenance of the acidic microenvironment in intracellular organelles, whereas its membrane-bound V(0)-sector is involved in Ca(2+)-dependent membrane fusion. In the secretory pathway, the V-ATPase is regulated by its type I transmembrane and V(0)-associated accessory subunit Ac45. To execute its function, the intact-Ac45 protein is proteolytically processed to cleaved-Ac45 thereby releasing its N-terminal domain. Here, we searched for the functional domains within Ac45 by analyzing a set of deletion mutants close to the in vivo situation, namely in transgenic Xenopus intermediate pituitary melanotrope cells. Intact-Ac45 was poorly processed and accumulated in the endoplasmic reticulum of the transgenic melanotrope cells. In contrast, cleaved-Ac45 was efficiently transported through the secretory pathway, caused an accumulation of the V-ATPase at the plasma membrane and reduced dopaminergic inhibition of Ca(2+)-dependent peptide secretion. Surprisingly, removal of the C-tail from intact-Ac45 caused cellular phenotypes also found for cleaved-Ac45, whereas C-tail removal from cleaved-Ac45 still allowed its transport to the plasma membrane, but abolished V-ATPase recruitment into the secretory pathway and left dopaminergic inhibition of the cells unaffected. We conclude that domains located in the N- and C-terminal portions of the Ac45 protein direct its trafficking, V-ATPase recruitment and Ca(2+)-dependent-regulated exocytosis.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Exocitose/fisiologia , Proteólise , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/genética , Retículo Endoplasmático/genética , Mapeamento de Peptídeos/métodos , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia , Deleção de Sequência , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas de Xenopus/genética , Xenopus laevis
8.
PLoS One ; 7(2): e31022, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363537

RESUMO

MicroRNAs (miRNAs) are important gene regulators that are abundantly expressed in both the developing and adult mammalian brain. These non-coding gene transcripts are involved in post-transcriptional regulatory processes by binding to specific target mRNAs. Approximately one third of known miRNA genes are located within intronic regions of protein coding and non-coding regions, and previous studies have suggested a role for intronic miRNAs as negative feedback regulators of their host genes. In the present study, we monitored the dynamic gene expression changes of the intronic miR-338-3p and miR-338-5p and their host gene Apoptosis-associated Tyrosine Kinase (AATK) during the maturation of rat hippocampal neurons. This revealed an uncorrelated expression pattern of mature miR-338 strands with their host gene. Sequence analysis of the 3' untranslated region (UTR) of rat AATK mRNA revealed the presence of two putative binding sites for miR-338-3p. Thus, miR-338-3p may have the capacity to modulate AATK mRNA levels in neurons. Transfection of miR-338-3p mimics into rat B35 neuroblastoma cells resulted in a significant decrease of AATK mRNA levels, while the transfection of synthetic miR-338-5p mimics did not alter AATK levels. Our results point to a possible molecular mechanism by which miR-338-3p participates in the regulation of its host gene by modulating the levels of AATK mRNA, a kinase which plays a role during differentiation, apoptosis and possibly in neuronal degeneration.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/genética , Regulação da Expressão Gênica , Íntrons/genética , MicroRNAs/genética , Proteínas Tirosina Quinases/genética , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Diferenciação Celular/genética , Biologia Computacional , Perfilação da Expressão Gênica , Hipocampo/citologia , MicroRNAs/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Neurônios/enzimologia , Ratos
9.
J Med Genet ; 48(12): 810-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22003227

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are non-coding gene transcripts involved in post-transcriptional regulation of genes. Recent studies identified miRNAs as important regulators of learning and memory in model organisms. So far, no mutations in specific miRNA genes have been associated with impaired cognitive functions. METHODS AND RESULTS: In three sibs and two unrelated patients with intellectual disability (ID), overlapping 1p21.3 deletions were detected by genome-wide array analysis. The shortest region of overlap included dihydropyrimidine dehydrogenase (DPYD) and microRNA 137 (MIR137). DPYD is involved in autosomal recessive dihydropyrimidine dehydrogenase deficiency. Hemizygous DPYD deletions were previously suggested to contribute to a phenotype with autism spectrum disorder and speech delay. Interestingly, the mature microRNA transcript microRNA-137 (miR-137) was recently shown to be involved in modulating neurogenesis in adult murine neuronal stem cells. Therefore, this study investigated the possible involvement of MIR137 in the 1p21.3-deletion phenotype. The patients displayed a significantly decreased expression of both precursor and mature miR-137 levels, as well as significantly increased expression of the validated downstream targets microphthalmia-associated transcription factor (MITF) and Enhancer of Zeste, Drosophila, Homologue 2 (EZH2), and the newly identified target Kruppel-like factor 4 (KLF4). The study also demonstrated significant enrichment of miR-137 at the synapses of cortical and hippocampal neurons, suggesting a role of miR-137 in regulating local synaptic protein synthesis machinery. CONCLUSIONS: This study showed that dosage effects of MIR137 are associated with 1p21.3 microdeletions and may therefore contribute to the ID phenotype in patients with deletions harbouring this miRNA. A local effect at the synapse might be responsible.


Assuntos
Deleção Cromossômica , Deficiência Intelectual/genética , MicroRNAs/genética , Adolescente , Adulto , Animais , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 1/metabolismo , Variações do Número de Cópias de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Di-Hidrouracila Desidrogenase (NADP)/genética , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Dosagem de Genes , Regulação da Expressão Gênica , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , MicroRNAs/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Complexo Repressor Polycomb 2 , Polimorfismo de Nucleotídeo Único , Cultura Primária de Células , Ratos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA