Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638430

RESUMO

For almost 30 years, the term "holobiont" has referred to an ecological unit where a host (e.g., human) and all species living in or around it are considered together. The concept highlights the complex interactions between the host and the other species, which, if disturbed may lead to disease and premature aging. Specifically, the impact of microbiome alterations on the etiology of acute lymphoblastic leukemia (ALL) in children is not fully understood, but has been the focus of much research in recent years. In ALL patients, significant reductions in microbiome diversity are already observable at disease onset. It remains unclear whether such alterations at diagnosis are etiologically linked with leukemogenesis or simply due to immunological alteration preceding ALL onset. Regardless, all chemotherapeutic treatment regimens severely affect the microbiome, accompanied by severe side effects, including mucositis, systemic inflammation, and infection. In particular, dominance of Enterococcaceae is predictive of infections during chemotherapy. Long-term dysbiosis, like depletion of Faecalibacterium, has been observed in ALL survivors. Modulation of the microbiome (e.g., by fecal microbiota transplant, probiotics, or prebiotics) is currently being researched for potential protective effects. Herein, we review the latest microbiome studies in pediatric ALL patients.

3.
PLoS Pathog ; 17(10): e1009928, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34695164

RESUMO

Non-specific protective effects of certain vaccines have been reported, and long-term boosting of innate immunity, termed trained immunity, has been proposed as one of the mechanisms mediating these effects. Several epidemiological studies suggested cross-protection between influenza vaccination and COVID-19. In a large academic Dutch hospital, we found that SARS-CoV-2 infection was less common among employees who had received a previous influenza vaccination: relative risk reductions of 37% and 49% were observed following influenza vaccination during the first and second COVID-19 waves, respectively. The quadrivalent inactivated influenza vaccine induced a trained immunity program that boosted innate immune responses against various viral stimuli and fine-tuned the anti-SARS-CoV-2 response, which may result in better protection against COVID-19. Influenza vaccination led to transcriptional reprogramming of monocytes and reduced systemic inflammation. These epidemiological and immunological data argue for potential benefits of influenza vaccination against COVID-19, and future randomized trials are warranted to test this possibility.


Assuntos
COVID-19/imunologia , Proteção Cruzada/fisiologia , Imunidade Inata/fisiologia , Vacinas contra Influenza/administração & dosagem , COVID-19/epidemiologia , COVID-19/prevenção & controle , Citocinas/imunologia , Citocinas/metabolismo , Regulação para Baixo , Imidazóis/imunologia , Incidência , Vacinas contra Influenza/imunologia , Países Baixos/epidemiologia , Recursos Humanos em Hospital , Poli I-C/imunologia , Proteômica , Fatores de Risco , Análise de Sequência de RNA
4.
Blood ; 136(18): 2003-2017, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32911536

RESUMO

The majority of childhood leukemias are precursor B-cell acute lymphoblastic leukemias (pB-ALLs) caused by a combination of prenatal genetic predispositions and oncogenic events occurring after birth. Although genetic predispositions are frequent in children (>1% to 5%), fewer than 1% of genetically predisposed carriers will develop pB-ALL. Although infectious stimuli are believed to play a major role in leukemogenesis, the critical determinants are not well defined. Here, by using murine models of pB-ALL, we show that microbiome disturbances incurred by antibiotic treatment early in life were sufficient to induce leukemia in genetically predisposed mice, even in the absence of infectious stimuli and independent of T cells. By using V4 and full-length 16S ribosomal RNA sequencing of a series of fecal samples, we found that genetic predisposition to pB-ALL (Pax5 heterozygosity or ETV6-RUNX1 fusion) shaped a distinct gut microbiome. Machine learning accurately (96.8%) predicted genetic predisposition using 40 of 3983 amplicon sequence variants as proxies for bacterial species. Transplantation of either wild-type (WT) or Pax5+/- hematopoietic bone marrow cells into WT recipient mice revealed that the microbiome is shaped and determined in a donor genotype-specific manner. Gas chromatography-mass spectrometry (GC-MS) analyses of sera from WT and Pax5+/- mice demonstrated the presence of a genotype-specific distinct metabolomic profile. Taken together, our data indicate that it is a lack of commensal microbiota rather than the presence of specific bacteria that promotes leukemia in genetically predisposed mice. Future large-scale longitudinal studies are required to determine whether targeted microbiome modification in children predisposed to pB-ALL could become a successful prevention strategy.


Assuntos
Suscetibilidade a Doenças , Disbiose/complicações , Fezes/microbiologia , Microbioma Gastrointestinal , Leucemia Experimental/prevenção & controle , Fator de Transcrição PAX5/fisiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/prevenção & controle , Animais , Feminino , Leucemia Experimental/genética , Leucemia Experimental/microbiologia , Leucemia Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/microbiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia
5.
Blood ; 132(3): 307-320, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-29724897

RESUMO

Heat shock protein 90 (HSP90) stabilizes many client proteins, including the BCR-ABL1 oncoprotein. BCR-ABL1 is the hallmark of chronic myeloid leukemia (CML) in which treatment-free remission (TFR) is limited, with clinical and economic consequences. Thus, there is an urgent need for novel therapeutics that synergize with current treatment approaches. Several inhibitors targeting the N-terminal domain of HSP90 are under investigation, but side effects such as induction of the heat shock response (HSR) and toxicity have so far precluded their US Food and Drug Administration approval. We have developed a novel inhibitor (aminoxyrone [AX]) of HSP90 function by targeting HSP90 dimerization via the C-terminal domain. This was achieved by structure-based molecular design, chemical synthesis, and functional preclinical in vitro and in vivo validation using CML cell lines and patient-derived CML cells. AX is a promising potential candidate that induces apoptosis in the leukemic stem cell fraction (CD34+CD38-) as well as the leukemic bulk (CD34+CD38+) of primary CML and in tyrosine kinase inhibitor (TKI)-resistant cells. Furthermore, BCR-ABL1 oncoprotein and related pro-oncogenic cellular responses are downregulated, and targeting the HSP90 C terminus by AX does not induce the HSR in vitro and in vivo. We also probed the potential of AX in other therapy-refractory leukemias. Therefore, AX is the first peptidomimetic C-terminal HSP90 inhibitor with the potential to increase TFR in TKI-sensitive and refractory CML patients and also offers a novel therapeutic option for patients with other types of therapy-refractory leukemia because of its low toxicity profile and lack of HSR.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/química , Resposta ao Choque Térmico/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica , Animais , Antineoplásicos/química , Sítios de Ligação , Biomarcadores Tumorais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Mesilato de Imatinib/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Camundongos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/química , Multimerização Proteica/efeitos dos fármacos , Análise Espectral , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
6.
EMBO Rep ; 16(12): 1656-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26545385

RESUMO

Toll-like receptor (TLR) 13 and TLR2 are the major sensors of Gram-positive bacteria in mice. TLR13 recognizes Sa19, a specific 23S ribosomal (r) RNA-derived fragment and bacterial modification of Sa19 ablates binding to TLR13, and to antibiotics such as erythromycin. Similarly, RNase A-treated Staphylococcus aureus activate human peripheral blood mononuclear cells (PBMCs) only via TLR2, implying single-stranded (ss) RNA as major stimulant. Here, we identify human TLR8 as functional TLR13 equivalent that promiscuously senses ssRNA. Accordingly, Sa19 and mitochondrial (mt) 16S rRNA sequence-derived oligoribonucleotides (ORNs) stimulate PBMCs in a MyD88-dependent manner. These ORNs, as well as S. aureus-, Escherichia coli-, and mt-RNA, also activate differentiated human monocytoid THP-1 cells, provided they express TLR8. Moreover, Unc93b1(-/-)- and Tlr8(-/-)-THP-1 cells are refractory, while endogenous and ectopically expressed TLR8 confers responsiveness in a UR/URR RNA ligand consensus motif-dependent manner. If TLR8 function is inhibited by suppression of lysosomal function, antibiotic treatment efficiently blocks bacteria-driven inflammatory responses in infected human whole blood cultures. Sepsis therapy might thus benefit from interfering with TLR8 function.


Assuntos
Escherichia coli/genética , Escherichia coli/imunologia , RNA Bacteriano/química , RNA Bacteriano/imunologia , RNA/química , RNA/imunologia , Receptor 8 Toll-Like/imunologia , Animais , Linhagem Celular Tumoral , Humanos , Leucócitos Mononucleares/imunologia , Camundongos , Oligorribonucleotídeos , RNA/genética , RNA Bacteriano/genética , RNA Mitocondrial , RNA Ribossômico 16S , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Receptor 8 Toll-Like/química , Receptor 8 Toll-Like/genética
7.
Science ; 337(6098): 1111-5, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22821982

RESUMO

Host protection from infection relies on the recognition of pathogens by innate pattern-recognition receptors such as Toll-like receptors (TLRs). Here, we show that the orphan receptor TLR13 in mice recognizes a conserved 23S ribosomal RNA (rRNA) sequence that is the binding site of macrolide, lincosamide, and streptogramin group (MLS) antibiotics (including erythromycin) in bacteria. Notably, 23S rRNA from clinical isolates of erythromycin-resistant Staphylococcus aureus and synthetic oligoribonucleotides carrying methylated adenosine or a guanosine mimicking a MLS resistance-causing modification failed to stimulate TLR13. Thus, our results reveal both a natural TLR13 ligand and specific mechanisms of antibiotic resistance as potent bacterial immune evasion strategy, avoiding recognition via TLR13.


Assuntos
Farmacorresistência Bacteriana Múltipla/imunologia , Eritromicina/farmacologia , RNA Ribossômico 23S/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Receptores Toll-Like/imunologia , Adenosina/metabolismo , Animais , Guanosina/metabolismo , Lincosamidas/farmacologia , Macrolídeos/farmacologia , Metilação , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Estreptograminas/farmacologia
8.
Insect Biochem Mol Biol ; 42(4): 240-50, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22210150

RESUMO

Two aspartate protease encoding complementary deoxyribonucleic acids (cDNA) were characterised from the small intestine (posterior midgut) of Triatoma infestans and the corresponding genes were named TiCatD and TiCatD2. The deduced 390 and 393 amino acid sequences of both enzymes contain two regions characteristic for cathepsin D proteases and the conserved catalytic aspartate residues forming the catalytic dyad, but only TiCatD2 possesses an entire C-terminal proline loop. The amino acid sequences of TiCatD and TiCatD2 show 51-58% similarity to other insect cathepsin D-like proteases and, respectively, 88 and 58% similarity to the aspartate protease ASP25 from T. infestans available in the GenBank database. In phylogenetic analysis, TiCatD and ASP25 clearly separate from cathepsin D-like sequences of other insects, TiCatD2 groups with cathepsin D-like proteases with proline loop. The activity of purified TiCatD and TiCatD2 was highest between pH 2 and 4, respectively, and hence, deviate from the pH values of the lumen of the small intestine, which varied in correlation with the time after feeding between pH 5.2 and 6.7 as determined by means of micro pH electrodes. Both cathepsins, TiCatD and TiCatD2, were purified from the lumen of the small intestine using pepstatin affinity chromatography and identified by nanoLC-ESI-MS/MS analysis as those encoded by the cDNAs. The proteolytic activity of the purified enzymes is highest at pH 3 and the respective genes are expressed in the both regions of the midgut, stomach (anterior midgut) and small intestine, not in the rectum, salivary glands, Malpighian tubules or haemocytes. The temporal expression pattern of both genes in the small intestine after feeding revealed a feeding dependent regulation for TiCatD but not for TiCatD2.


Assuntos
Ácido Aspártico Proteases/metabolismo , Proteínas de Insetos/metabolismo , Triatoma/enzimologia , Sequência de Aminoácidos , Animais , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/isolamento & purificação , Cromatografia de Afinidade , DNA Complementar/química , Expressão Gênica , Concentração de Íons de Hidrogênio , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Intestinos/enzimologia , Espectrometria de Massas , Dados de Sequência Molecular , Peso Molecular , Análise de Sequência de DNA , Triatoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA