Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 473(21): 4027-4044, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27609814

RESUMO

The Na+-HCO3- cotransporter NBCn1 (SLC4A7) is up-regulated in breast cancer, important for tumor growth, and a single nucleotide polymorphism (SNP), rs4973768, in its 3' untranslated region (3'UTR) correlates with increased breast cancer risk. We previously demonstrated that NBCn1 expression and promoter activity are strongly increased in breast cancer cells expressing a constitutively active oncogenic human epidermal growth factor receptor 2 (HER2) (p95HER2). Here, we address the roles of p95HER2 in regulating NBCn1 expression via post-transcriptional mechanisms. p95HER2 expression in MCF-7 cells reduced the rate of NBCn1 mRNA degradation. The NBCn1 3'UTR down-regulated luciferase reporter expression in control cells, and this was reversed by p95HER2, suggesting that p95HER2 counteracts 3'UTR-mediated suppression of NBCn1 expression. Truncation analyses identified three NBCn1 3'UTR regions of regulatory importance. Mutation of putative miRNA-binding sites (miR-374a/b, miR-200b/c, miR-29a/b/c, miR-488) in these regions did not have significant impact on 3'UTR activity. The NBCn1 3'UTR interacted directly with the RNA-binding protein human antigen R (HuR), and HuR knockdown reduced NBCn1 expression. Conversely, ablation of a distal AU-rich element increased 3'UTR-driven reporter activity, suggesting complex regulatory roles of these sites. The cancer-associated SNP variant decreased reporter expression in T-47D breast cancer cells, yet not in MCF-7, MDA-MB-231 and SK-BR-3 cells, arguing against a general role in regulating NBCn1 expression. Finally, p95HER2 expression increased total and plasma membrane NBCn1 protein levels and decreased the rate of NBCn1 protein degradation. Collectively, this is the first work to demonstrate 3'UTR-mediated NBCn1 regulation, shows that p95HER2 regulates NBCn1 expression at multiple levels, and substantiates the central position of p95HER2-NBCn1 signaling in breast cancer.


Assuntos
Regiões 3' não Traduzidas/genética , Neoplasias da Mama/metabolismo , Receptor ErbB-2/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Western Blotting , Neoplasias da Mama/genética , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Imunofluorescência , Humanos , Células MCF-7 , Estabilidade de RNA/genética , Estabilidade de RNA/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Receptor ErbB-2/genética , Simportadores de Sódio-Bicarbonato/genética
2.
BMC Biol ; 14: 31, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27083547

RESUMO

BACKGROUND: Extracellular signal-regulated kinase 2 (ERK2) is an S/T kinase with more than 200 known substrates, and with critical roles in regulation of cell growth and differentiation and currently no membrane proteins have been linked to ERK2 scaffolding. METHODS AND RESULTS: Here, we identify the human Na(+)/H(+) exchanger 1 (hNHE1) as a membrane scaffold protein for ERK2 and show direct hNHE1-ERK1/2 interaction in cellular contexts. Using nuclear magnetic resonance (NMR) spectroscopy and immunofluorescence analysis we demonstrate that ERK2 scaffolding by hNHE1 occurs by one of three D-domains and by two non-canonical F-sites located in the disordered intracellular tail of hNHE1, mutation of which reduced cellular hNHE1-ERK1/2 co-localization, as well as reduced cellular ERK1/2 activation. Time-resolved NMR spectroscopy revealed that ERK2 phosphorylated the disordered tail of hNHE1 at six sites in vitro, in a distinct temporal order, with the phosphorylation rates at the individual sites being modulated by the docking sites in a distant dependent manner. CONCLUSIONS: This work characterizes a new type of scaffolding complex, which we term a "shuffle complex", between the disordered hNHE1-tail and ERK2, and provides a molecular mechanism for the important ERK2 scaffolding function of the membrane protein hNHE1, which regulates the phosphorylation of both hNHE1 and ERK2.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/química , Linhagem Celular , Ativação Enzimática , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Dobramento de Proteína , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/química
3.
Mol Cancer Res ; 13(1): 63-77, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25143433

RESUMO

UNLABELLED: Despite the frequent expression of N-terminally truncated ErbB2 (ΔNErbB2/p95HER2) in breast cancer and its association with Herceptin resistance and poor prognosis, it remains poorly understood how ΔNErbB2 affects chemotherapy-induced cell death. Previously it was shown that ΔNErbB2 upregulates acid extrusion from MCF-7 breast cancer cells and that inhibition of the Na(+)/H(+) exchanger (SLC9A1/NHE1) strongly sensitizes ΔNErbB2-expressing MCF-7 cells to cisplatin chemotherapy. The aim of this study was to identify the mechanism through which ΔNErbB2 regulates cisplatin-induced breast cancer cell death, and determine how NHE1 regulates this process. Cisplatin treatment elicited apoptosis, ATM phosphorylation, upregulation of p53, Noxa (PMAIP1), and PUMA (BBC3), and cleavage of caspase-9, -7, fodrin, and PARP-1 in MCF-7 cells. Inducible ΔNErbB2 expression strongly reduced cisplatin-induced ATM- and p53-phosphorylation, augmented Noxa upregulation and caspase-9 and -7 cleavage, doubled p21(WAF1/Cip1) (CDKN1A) expression, and nearly abolished Bcl-2 expression. LC3-GFP analysis demonstrated that autophagic flux was reduced by cisplatin in a manner augmented by ΔNErbB2, yet did not contribute to cisplatin-induced death. Using knockdown approaches, it was shown that cisplatin-induced caspase-7 cleavage in ΔNErbB2-MCF-7 cells was Noxa- and caspase-9 dependent. This pathway was augmented by NHE1 inhibition, while the Na(+)/HCO3 (-) cotransporter (SLC4A7/NBCn1) was internalized following cisplatin exposure. IMPLICATIONS: This work reveals that ΔNErbB2 strongly affects several major pro- and antiapoptotic pathways and provides mechanistic insight into the role of NHE1 in chemotherapy resistance. These findings have relevance for defining therapy regimens in breast cancers with ΔNErbB2 and/or NHE1 overexpression.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Cisplatino/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética , Receptor ErbB-2/biossíntese , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Proteínas de Transporte de Cátions/biossíntese , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Fosforilação , Receptor ErbB-2/genética , Simportadores de Sódio-Bicarbonato/biossíntese , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/biossíntese , Trocadores de Sódio-Hidrogênio/genética
4.
Front Physiol ; 5: 130, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24795638

RESUMO

A unifying feature of solid tumors is a markedly altered pH profile compared to normal tissues. This reflects that solid tumors, despite completely different origins, often share several phenotypic properties with implications for intra- and extracellular pH. These include: a metabolic shift in most cancer cells toward more acid-producing pathways, reflecting both oncogenic signaling and the development of hypoxia in poorly perfused regions of the tumors; the poorly perfused and often highly dense tumor microenvironment, reducing the diffusive flux of acid equivalents compared to that in normal tissues; and the markedly altered regulation of the expression and activity of pH-regulatory transport proteins in cancer cells. While some of these properties of tumors have been well described in recent years, the great majority of the research in this clinically important area has focused on proton transport, in particular via the Na(+)/H(+) exchanger 1 (SLC9A1, NHE1) and various H(+) ATPases. We have, however, recently demonstrated that at least under some conditions, including in vitro models of HER2 positive breast cancer, and measurements obtained directly in freshly dissected human mammary carcinomas, bicarbonate transporters such as the electroneutral Na(+), HCO(-) 3 cotransporter (SLC4A7, NBCn1), are upregulated and play central roles in pH regulation. In this review, we summarize and discuss the current knowledge regarding the regulation and roles of bicarbonate transporters in cancer. Furthermore, we present new analyses of publicly available expression data demonstrating widely altered expression levels of SLC4- and SLC26 family transporters in breast-, lung-, and colon cancer patients, and we hypothesize that bicarbonate transporter dysregulation may have both diagnostic and therapeutic potential in cancer treatment.

5.
FASEB J ; 28(1): 350-63, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24088818

RESUMO

Misregulation of acid-base transport plays central roles in cancer development. We previously demonstrated the strong up-regulation of the Na(+),HCO3(-) cotransporter NBCn1 (SLC4A7) in MCF-7 breast cancer cells by a truncated, constitutively active ErbB2 (HER2) receptor, ΔNErbB2, and showed that NBCn1 expression and activity are increased in breast cancer tissue from patients. Here, we present the first in-depth characterization of an SLC4A7 promoter and identify its minimal ΔNErbB2-sensitive region. Inhibition or siRNA-mediated knockdown of PI3K, Akt1, ERK1/2, or Src decreased the NBCn1 protein level in ΔNErbB2-expressing MCF-7 cells by ~50, 60, 30 and 35%, respectively. Further, knockdown of the transcription factor Krüppel-like factor 4 (KLF4) reduced NBCn1 protein expression by ~40%, and KLF4 overexpression increased NBCn1 expression by 50-80%. In contrast, knockdown of the closely related transcription factor specificity protein 1 (Sp1) or transfection with dominant-negative Sp1 increased NBCn1 expression by ~35 and ~50%, respectively. NBCn1 expression was also increased by stimulation of full-length ErbB1, -2, and -3 receptors in SKBr3 cells (1.5- and 2-fold by NRG1 or EGF, respectively) or after their exogenous expression in MCF-7 cells. Finally, stimulation with NRG1 or EGF more than doubled acid extrusion capacity in SKBr3 cells. In conclusion, NBCn1 is strongly upregulated by ErbB receptor signaling in a manner involving opposite effects of KLF4 and Sp1, transcription factors with central roles in cancer development. ErbB-induced up-regulation of NBCn1-mediated acid extrusion may play important physiological and pathophysiological roles in the breast epithelium and other tissues with high ErbB receptor levels.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Quinases da Família src/metabolismo , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptor ErbB-2/genética , Simportadores de Sódio-Bicarbonato/genética , Trocadores de Sódio-Hidrogênio/genética , Quinases da Família src/genética
6.
ChemMedChem ; 7(10): 1808-14, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22927258

RESUMO

Na(+)-coupled HCO(3)(-) transporters (NBCs) mediate the transport of bicarbonate ions across cell membranes and are thus ubiquitous regulators of intracellular pH. NBC dysregulation is associated with a range of diseases; for instance, NBCn1 is strongly up-regulated in a model of ErbB2-dependent breast cancer, a malignant and widespread cancer with no targeted treatment options, and single-nucleotide polymorphisms in NBCn1 genetically link to breast cancer development and hypertension. The N-cyanosulfonamide S0859 has been shown to selectively inhibit NBCs, and its availability on the gram scale is therefore of significant interest to the scientific community. Herein we describe a short and efficient synthesis of S0859 with an overall yield of 45 % from commercially available starting materials. The inhibitory effect of S0859 on recovery of intracellular pH after an acid load was verified in human and murine cancer cell lines in Ringer solutions. However, S0859 binds very strongly to components in plasma, and accordingly, measurements on isolated murine tissues showed no effect of S0859 at concentrations up to 50 µM.


Assuntos
Benzamidas/síntese química , Simportadores de Sódio-Bicarbonato/antagonistas & inibidores , Sulfonamidas/síntese química , Animais , Benzamidas/química , Benzamidas/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Células MCF-7 , Camundongos , Simportadores de Sódio-Bicarbonato/metabolismo , Sulfonamidas/química , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA