Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polym Bull (Berl) ; 79(12): 10949-10968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035006

RESUMO

In view of the intense interest in applications of silver nanoparticles in products for the medical field and in food preservation packaging due to their antimicrobial properties, the ecotoxicology of silver nanocomposites was evaluated in films. Test with the sea urchin Echinometra lucunter, to evaluate embryonic development and contamination by the action of silver and titanium nanoparticles in polyethylene nanocomposite films presents new results. The silver nanoparticle's stability in polymeric materials can be enhanced by adding carriers, such as titanium dioxide and montmorillonite clay (MMT) without to producing one unfriendly material. For this research, low-density polyethylene (LDPE)/linear low-density polyethylene (LLDPE) were used processed in a twin-screw extruder, followed by gamma irradiation with 25 kGy and characterized by ecotoxicology assays, field emission scanning electron microscopy (FESEM), scanning electron microscopy and energy dispersive spectroscopy (SEM-EDX), differential scanning calorimetry (DSC), thermogravimetric analysis (TG), Raman spectroscopy (SERS) and mechanical properties. The antibacterial properties of the LDPE films were investigated against Escherichia coli and Staphylococcus aureus. The gamma irradiation had an important effect in the synthesis of silver nanoparticles resulting in bactericidal activity and the death of 100% of the tested bacteria. The evaluation of the environment was considered with the ecotoxicological investigation carried out. The results indicated that the polymeric films with silver nanoparticles and TiO2 do not contaminate the environment and neither interfere with the larval development of Echinometra lucunter. The obtained materials can be used in various applications with antimicrobial properties.

2.
Mater Sci Eng C Mater Biol Appl ; 75: 845-853, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415538

RESUMO

This paper presents a study on biocidal effect of polymer nanocomposite films of gamma irradiated polypropylene (PP) and silver nanoparticles. The modified polypropylene was obtained from isotactic polypropylene (iPP) in pellets form by irradiation with gamma rays in the presence of acetylene. A new morphology with long chain branching of PP and distinct rheology is obtained by this process. The blend of 50/50wt% neat PP and PP modified by gamma radiation were further mixed using a twin screw extruder. The AgNPs were infused into this polymer blend at different concentrations of: 0.1%; 0.25%; 0.5%; 1.0%; 1.0% (PVP), 2.0% and 4.0% by wt%. These polymer nanocomposites were characterized by Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), cytotoxicity test and Kirby-Bauer disk diffusion techniques. The bactericidal effect of Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were assessed in detail.


Assuntos
Antibacterianos/química , Nanocompostos/química , Polipropilenos/química , Prata/química , Antibacterianos/farmacologia , Varredura Diferencial de Calorimetria , Nanopartículas Metálicas , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA