Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 1376, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992721

RESUMO

Part of the studies involved in safety assessment of genetically engineered crops includes characterizing the organization, integrity, and stability of the inserted DNA and evaluating the potential allergenicity and toxicity of newly-expressed proteins. Molecular characterization of the introduced DNA in provitamin A biofortified rice event GR2E confirmed insertion of a single copy of the transfer-DNA in the genome and its inheritance as a single locus. Nucleotide sequencing of the inserted DNA confirmed it was introduced without modifications. The phytoene synthase, and carotene desaturase proteins did not display sequence similarity with allergens or toxins. Both proteins were rapidly digested in simulated gastric fluid and their enzymatic activity was inhibited upon heat treatment. Acute oral toxicity testing of the protein in mice demonstrated lack of adverse effects. These evidences substantiated the lack of any identifiable hazards for both proteins and in combination with other existing comparative analyses provided assurance that food derived from this rice is safe. This conclusion is in line with those of the regulatory agencies of US Food and Drug Administration, Health Canada and Food Standard Australia and New Zealand.


Assuntos
Biofortificação , Inocuidade dos Alimentos , Alimentos Fortificados/análise , Alimentos Geneticamente Modificados , Oryza/genética , Provitaminas , Vitamina A , Animais , Genoma de Planta , Geranil-Geranildifosfato Geranil-Geraniltransferase , Camundongos , Provitaminas/análise , Provitaminas/genética , Vitamina A/análise , Vitamina A/genética
2.
Sci Rep ; 6: 19792, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26806528

RESUMO

More than two billion people are micronutrient deficient. Polished grains of popular rice varieties have concentration of approximately 2 µg g(-1) iron (Fe) and 16 µg g(-1) zinc (Zn). The HarvestPlus breeding programs for biofortified rice target 13 µg g(-1) Fe and 28 µg g(-1) Zn to reach approximately 30% of the estimated average requirement (EAR). Reports on engineering Fe content in rice have shown an increase up to 18 µg g(-1) in glasshouse settings; in contrast, under field conditions, 4 µg g(-1) was the highest reported concentration. Here, we report on selected transgenic events, field evaluated in two countries, showing 15 µg g(-1) Fe and 45.7 µg g(-1) Zn in polished grain. Rigorous selection was applied to 1,689 IR64 transgenic events for insert cleanliness and, trait and agronomic performances. Event NASFer-274 containing rice nicotianamine synthase (OsNAS2) and soybean ferritin (SferH-1) genes showed a single locus insertion without a yield penalty or altered grain quality. Endosperm Fe and Zn enrichment was visualized by X-ray fluorescence imaging. The Caco-2 cell assay indicated that Fe is bioavailable. No harmful heavy metals were detected in the grain. The trait remained stable in different genotype backgrounds.


Assuntos
Alimentos Fortificados , Ferro , Micronutrientes , Oryza/química , Zinco , Colômbia , Grão Comestível/química , Endosperma/química , Expressão Gênica , Genótipo , Metais Pesados/química , Oryza/genética , Filipinas , Plantas Geneticamente Modificadas , Característica Quantitativa Herdável , Sementes , Transgenes
3.
Methods Mol Biol ; 1385: 201-22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26614292

RESUMO

One of the major challenges in plant molecular biology is to generate transgenic plants that express transgenes stably over generations. Here, we describe some routine methods to study transgene locus structure and to analyze transgene expression in plants: Southern hybridization using DIG chemiluminescent technology for characterization of transgenic locus, SYBR Green-based real-time RT-PCR to measure transgene transcript level, and protein immunoblot analysis to evaluate accumulation and stability of transgenic protein product in the target tissue.


Assuntos
Plantas Geneticamente Modificadas , Transgenes/genética , Southern Blotting , Western Blotting , Expressão Gênica , Oryza/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Mol Breed ; 33: 23-37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24482599

RESUMO

Biofortification of rice (Oryza sativa L.) using a transgenic approach to increase the amount of iron in the grain is proposed as a low-cost, reliable, and sustainable solution to help developing countries combat anemia. In this study, we generated and evaluated a large number of rice or soybean ferritin over-accumulators in rice mega-variety IR64, including marker-free events, by introducing soybean or rice ferritin genes into the endosperm for product development. Accumulation of the protein was confirmed by ELISA, in situ immunological detection, and Western blotting. As much as a 37- and 19-fold increase in the expression of ferritin gene in single and co-transformed plants, respectively, and a 3.4-fold increase in Fe content in the grain over the IR64 wild type was achieved using this approach. Agronomic characteristics of a total of 1,860 progenies from 58 IR64 single independent transgenic events and 768 progenies from 27 marker-free transgenic events were evaluated and most trait characteristics did not show a penalty. Grain quality evaluation of high-Fe IR64 transgenic events showed quality similar to that of the wild-type IR64. To understand the effect of transgenes on iron homeostasis, transcript analysis was conducted on a subset of genes involved in iron uptake and loading. Gene expression of the exogenous ferritin gene in grain correlates with protein accumulation and iron concentration. The expression of NAS2 and NAS3 metal transporters increased during the grain milky stage.

5.
Plant Cell Rep ; 26(8): 1221-31, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17377795

RESUMO

Transgenics for the expression of beta-carotene biosynthetic pathway in the endosperm were developed in indica rice background by introducing phytoene synthase (psy) and phytoene desaturase (crtI) genes through Agrobacterium-mediated transformation, employing non-antibiotic positive selectable marker phosphomannose isomerase (pmi). Twenty-seven transgenic lines were characterized for the structural organization of T-DNA inserts and the expression of transgenes in terms of total carotenoid and beta-carotene accumulation in the endosperm. Ten lines were also studied for the inheritance of transgenic loci to the T(1) progenies. Copy number and sites of integration of the transgenes ranged from one to four. Almost 50% of the transgenic lines showed rearrangement of T-DNA inserts. However, most of the rearrangements occurred in the crtI expression cassette which is adjacent to the right T-DNA border. Differences in copy numbers of psy and crtI were also observed indicating partial T-DNA integration. Beyond T-DNA border transfer was also detected in 25% of the lines. Fifty percent of the lines studied showed single Mendelian locus inheritance, while two lines showed bi-locus inheritance in the T(1) progenies. Some of the lines segregating in 3:1 ratio showed two sites of integration on restriction digestion analysis indicating that the T-DNA insertion sites were tightly linked. Three transgenic lines showed nonparental types in the segregating progenies, indicating unstable transgenic locus. Evidences from the HPLC analysis showed that multiple copies of transgenes had a cumulative effect on the accumulation of carotenoid in the endosperm. T(1) progenies, in general, accumulated more carotenoids than their respective parents, the highest being 6.77 mug/g of polished seeds. High variation in the carotenoid accumulation was observed within the T(1) progenies which could be attributed to the variation in the structural organization and expression of transgenes, minor variations in the genetic background within the progeny plants, or differences in the plant microenvironments. The study identified lines worthy of further multiplication and breeding based on transgene structural integrity in the segregating progeny and high expression levels in terms of the beta-carotene accumulation.


Assuntos
Carotenoides/metabolismo , DNA Bacteriano/genética , Ligação Genética/genética , Oryza/genética , Oryza/metabolismo , Transgenes/genética , Cruzamento , Carotenoides/biossíntese , Regulação da Expressão Gênica de Plantas , Engenharia Genética , Oryza/classificação , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/anatomia & histologia , Sementes/genética , Vitamina A , beta Caroteno/biossíntese , beta Caroteno/metabolismo
6.
Plant Biotechnol J ; 4(4): 467-75, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17177811

RESUMO

We have developed near-isogenic introgression lines (NIILs) of an elite indica rice cultivar (IR64) with the genes for beta-carotene biosynthesis from dihaploid (DH) derivatives of golden japonica rice (cv. T309). A careful analysis of the DH lines indicated the integration of the genes of interest [phytoene synthase (psy) and phytoene desaturase (crtI)] and the selectable marker gene (hygromycin phosphotransferase, hph) in two unlinked loci. During subsequent crossing, progenies could be obtained carrying only the locus with psy and crtI, which was segregated independently from the locus containing the hph gene during meiotic segregation. The NIILs (BC(2)F(2)) showed maximum similarity with the recurrent parent cultivar IR64. Further, progenies of two NIILs were devoid of any fragments beyond the left or right border, including the chloramphenicol acetyltransferase (cat) antibiotic resistance gene of the transformation vector. Spectrophotometric readings showed the accumulation of up to 1.06 microg total carotenoids, including beta-carotene, in 1 g of the endosperm. The accumulation of beta-carotene was also evident from the clearly visible yellow colour of the polished seeds.


Assuntos
Oryza/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , beta Caroteno/biossíntese , Alquil e Aril Transferases/genética , Carotenoides/biossíntese , Cloranfenicol O-Acetiltransferase/genética , Impressões Digitais de DNA , Técnicas de Transferência de Genes , Genes Bacterianos , Engenharia Genética/métodos , Marcadores Genéticos , Geranil-Geranildifosfato Geranil-Geraniltransferase , Haploidia , Endogamia , Oxirredutases/genética , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/embriologia , Sementes/anatomia & histologia , Sementes/genética , Vitamina A/metabolismo , beta Caroteno/genética
7.
Plant Biotechnol J ; 1(2): 81-90, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17147745

RESUMO

Vitamin-A deficiency (VAD) is a major malnutrition problem in South Asia, where indica rice is the staple food. Indica-type rice varieties feed more than 2 billion people. Hence, we introduced a combination of transgenes using the biolistic system of transformation enabling biosynthesis of provitamin A in the endosperm of several indica rice cultivars adapted to diverse ecosystems of different countries. The rice seed-specific glutelin promoter (Gt-1 P) was used to drive the expression of phytoene synthase (psy), while lycopene beta-cyclase (lcy) and phytoene desaturase (crtI), fused to the transit peptide sequence of the pea-Rubisco small subunit, were driven by the constitutive cauliflower mosaic virus promoter (CaMV35S P). Transgenic plants were recovered through selection with either CaMV35S P driven hph (hygromycin phosphotransferase) gene or cestrum yellow leaf curling virus promoter (CMP) driven pmi (phophomannose isomerase) gene. Molecular and biochemical analyses demonstrated stable integration and expression of the transgenes. The yellow colour of the polished rice grain evidenced the carotenoid accumulation in the endosperm. The colour intensity correlated with the estimated carotenoid content by spectrophotometric and HPLC analysis. Carotenoid level in cooked polished seeds was comparable (with minor loss of xanthophylls) to that in non-cooked seeds of the same transgenic line. The variable segregation pattern in T1 selfing generation indicated single to multiple loci insertion of the transgenes in the genome. This is the first report of using nonantibiotic pmi driven by a novel promoter in generating transgenic indica rice for possible future use in human nutrition.

8.
Plant Biotechnol J ; 1(3): 155-65, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-17156029

RESUMO

In this study, we have demonstrated that two independent loci are involved in the integration of the insecticidal protein gene cryIAb/cryIAc and selectable marker gene hph in the recipient genome of the elite Chinese CMS restorer line Minghui 63. We have also documented the structural organization of these transgenes in each locus by restriction enzyme digestion and Southern blot analysis. The independent locus integration of different transgenes allowed us to remove the selectable marker gene hph from the gene of interest simply by self-segregation. Not having the selectable marker gene will enhance the commercial value of our transgenic line TT51-1, which showed a consistently high level of resistance against repeated infestations of yellow stem borers and natural outbreaks of leaf-folders, without a reduction in yield potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA