Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Biol Eng Comput ; 61(6): 1409-1425, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36719564

RESUMO

Cardiovascular diseases are among the leading causes of mortality worldwide, with more than 23 million related deaths per year by 2030, according to the World Heart Federation. Although most of these diseases may be prevented, population awareness strategies are still ineffective. In this context, we propose the CML-Cardio tool, a machine learning application to automate the risk classification process of developing CVDs. For this, researchers in our group collected data on diabetes, blood pressure, and other risk factors in a private company. Our final model consists of a cascade system to handle highly imbalanced data. In the first stage, a binary model is responsible for predicting whether a patient has a low risk of developing CVDs or if has a risk that needs attention. In this step, we use six algorithms: logistic regression, SVM, random forest, XGBoost, CatBoost, and multilayer perceptron. The better results presented an average accuracy of 0.86 ± 0.03 and f-score of 0.85 ± 0.04. We interpret each feature's impact on the models' output and validate the subsystem for the next step. In the second stage, we use an anomaly detection model to learn the intermediate risk patterns present in the instances that need attention. The cascade model presented an average accuracy of 0.80 ± 0.07 and f-score of 0.70 ± 0.07. Finally, we develop the CML-Cardio prototype of an actual application as a primary prevention strategy. Graphical abstract In this work, we propose the CML-Cardio tool, a cascade machine learning method to classify cardiovascular disease risk.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/prevenção & controle , Algoritmos , Pressão Sanguínea , Aprendizado de Máquina , Prevenção Primária
2.
Comput Biol Med ; 132: 104335, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33812263

RESUMO

The sudden outbreak of coronavirus disease 2019 (COVID-19) revealed the need for fast and reliable automatic tools to help health teams. This paper aims to present understandable solutions based on Machine Learning (ML) techniques to deal with COVID-19 screening in routine blood tests. We tested different ML classifiers in a public dataset from the Hospital Albert Einstein, São Paulo, Brazil. After cleaning and pre-processing the data has 608 patients, of which 84 are positive for COVID-19 confirmed by RT-PCR. To understand the model decisions, we introduce (i) a local Decision Tree Explainer (DTX) for local explanation and (ii) a Criteria Graph to aggregate these explanations and portrait a global picture of the results. Random Forest (RF) classifier achieved the best results (accuracy 0.88, F1-score 0.76, sensitivity 0.66, specificity 0.91, and AUROC 0.86). By using DTX and Criteria Graph for cases confirmed by the RF, it was possible to find some patterns among the individuals able to aid the clinicians to understand the interconnection among the blood parameters either globally or on a case-by-case basis. The results are in accordance with the literature and the proposed methodology may be embedded in an electronic health record system.


Assuntos
COVID-19 , Brasil , Árvores de Decisões , Testes Hematológicos , Humanos , Aprendizado de Máquina , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA