Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (181)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35377367

RESUMO

Förster resonance energy transfer (FRET) is an established fluorescence-based method used to successfully measure distances in and between biomolecules in vitro as well as within cells. In FRET, the efficiency of energy transfer, measured by changes in fluorescence intensity or lifetime, relates to the distance between two fluorescent molecules or labels. Determination of dynamics and conformational changes from the distances are just some examples of applications of this method to biological systems. Under certain conditions, this methodology can add to and enhance existing X-ray crystal structures by providing information regarding dynamics, flexibility, and adaptation to binding surfaces. We describe the use of FRET and associated distance determinations to elucidate structural properties, through the identification of a binding site or the orientations of dimer subunits. Through judicious choice of labeling sites, and often employment of multiple labeling strategies, we have successfully applied these mapping methods to determine global structural properties in a protein-DNA complex and the SecA-SecYEG protein translocation system. In the SecA-SecYEG system, we have used FRET mapping methods to identify the preprotein-binding site and determine the local conformation of the bound signal sequence region. This study outlines the steps for performing FRET mapping studies, including identification of appropriate labeling sites, discussion of possible labels including non-native amino acid residues, labeling procedures, how to perform measurements, and interpreting the data.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Sinais Direcionadores de Proteínas , Sítios de Ligação , Transferência Ressonante de Energia de Fluorescência/métodos , Ligação Proteica
2.
Biochemistry ; 52(14): 2388-401, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23484952

RESUMO

The Sec machinery constitutes the major pathway for protein translocation in bacteria. SecA is thought to act as a molecular motor driving translocation of the preprotein across the membrane by repeated ATP-driven cycles of insertion and retraction at the translocon channel. SecA is predominately a dimer under physiological conditions; however, its oligomeric state during active protein translocation is still unresolved. Five SecA crystal structures have been determined, each displaying a different dimer interface, suggesting that SecA may adopt different dimer configurations. In this study, a Förster resonance energy transfer approach was utilized with nine functional monocysteine SecA mutants labeled with appropriate dyes to determine the predominant solution state dimer. Three different dye pairs allowed interprotomer distances ranging from 20 to 140 Å to be investigated. Comparison of 15 experimentally determined distances with those predicted from X-ray structures showed the greatest agreement with the Bacillus subtilis SecA antiparallel dimer structure [Hunt, J., Weinkauf, S., Henry, L., Fak, J. J., McNicholas, P., Oliver, D. B., and Deisenhfer, J. (2002) Science 297, 2018-2026]. The binding of two signal peptides to SecA was also examined to determine their effect on SecA dimer structure. We found that the SecA dimer is maintained upon peptide binding; however, the preprotein cross-linking domain (PPXD) and helical wing domain regions experience significant conformational changes, and the PPXD movement is greatly enhanced by binding of an extended signal peptide containing 19 additional residues. Modeling of an "open" antiparallel dimer structure suggests that binding of preprotein to SecA induces an activated open conformation suitable for binding to SecYEG.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína/química , Cisteína/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutação Puntual , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Sinais Direcionadores de Proteínas , Canais de Translocação SEC , Proteínas SecA
3.
J Bacteriol ; 194(9): 2205-13, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22389482

RESUMO

Bacterial SecA proteins can be categorized by the presence or absence of a variable subdomain (VAR) located within nucleotide-binding domain II of the SecA DEAD motor. Here we show that VAR is dispensable for SecA function, since the VAR deletion mutant secAΔ519-547 displayed a wild-type rate of cellular growth and protein export. Loss or gain of VAR is extremely rare in the history of bacterial evolution, indicating that it appears to contribute to secA function within the relevant species in their natural environments. VAR removal also results in additional secA phenotypes: azide resistance (Azi(r)) and suppression of signal sequence defects (PrlD). The SecAΔ(519-547) protein was found to be modestly hyperactive for SecA ATPase activities and displayed an accelerated rate of ADP release, consistent with the biochemical basis of azide resistance. Based on our findings, we discuss models whereby VAR allosterically regulates SecA DEAD motor function at SecYEG.


Assuntos
Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Filogenia , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Canais de Translocação SEC , Proteínas SecA
4.
J Bacteriol ; 194(2): 307-16, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22056930

RESUMO

SecA signal peptide interaction is critical for initiating protein translocation in the bacterial Sec-dependent pathway. Here, we have utilized the recent nuclear magnetic resonance (NMR) and Förster resonance energy transfer studies that mapped the location of the SecA signal peptide-binding site to design and isolate signal peptide-binding-defective secA mutants. Biochemical characterization of the mutant SecA proteins showed that Ser226, Val310, Ile789, Glu806, and Phe808 are important for signal peptide binding. A genetic system utilizing alkaline phosphatase secretion driven by different signal peptides was employed to demonstrate that both the PhoA and LamB signal peptides appear to recognize a common set of residues at the SecA signal peptide-binding site. A similar system containing either SecA-dependent or signal recognition particle (SRP)-dependent signal peptides along with the prlA suppressor mutation that is defective in signal peptide proofreading activity were employed to distinguish between SecA residues that are utilized more exclusively for signal peptide recognition or those that also participate in the proofreading and translocation functions of SecA. Collectively, our data allowed us to propose a model for the location of the SecA signal peptide-binding site that is more consistent with recent structural insights into this protein translocation system.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ligação Proteica/fisiologia , Sinais Direcionadores de Proteínas/fisiologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Escherichia coli , Transferência Ressonante de Energia de Fluorescência , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica , Espectroscopia de Ressonância Magnética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Mutação , Conformação Proteica , Sinais Direcionadores de Proteínas/genética , Canais de Translocação SEC , Proteínas SecA
5.
J Biol Chem ; 286(14): 12371-80, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21317284

RESUMO

The two major components of the Eubacteria Sec-dependent protein translocation system are the heterotrimeric channel-forming component SecYEG and its binding partner, the SecA ATPase nanomotor. Once bound to SecYEG, the preprotein substrate, and ATP, SecA undergoes ATP-hydrolytic cycles that drive the stepwise translocation of proteins. Although a previous site-directed in vivo photocross-linking study (Mori, H., and Ito, K. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 16159-16164) elucidated residues of SecY needed for interaction with SecA, no reciprocal study for SecA protein has been reported to date. In the present study we mapped residues of SecA that interact with SecY or SecG utilizing this approach. Our results show that distinct domains of SecA on two halves of the molecule interact with two corresponding SecY partners as well as with the central cytoplasmic domain of SecG. Our data support the in vivo relevance of the Thermotoga maritima SecA·SecYEG crystal structure that visualized SecYEG interaction for only one-half of SecA as well as previous studies indicating that SecA normally binds two molecules of SecYEG.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Fotoquímica/métodos , Benzofenonas/química , Transporte Biológico , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Mathanococcus/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/química , Ligação Proteica , Transporte Proteico , Thermotoga maritima/metabolismo
6.
Biochemistry ; 49(4): 782-92, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20025247

RESUMO

Identification of the signal peptide-binding domain within SecA ATPase is an important goal for understanding the molecular basis of SecA preprotein recognition as well as elucidating the chemo-mechanical cycle of this nanomotor during protein translocation. In this study, Forster resonance energy transfer methodology was employed to map the location of the SecA signal peptide-binding domain using a collection of functional monocysteine SecA mutants and alkaline phosphatase signal peptides labeled with appropriate donor-acceptor fluorophores. Fluorescence anisotropy measurements yielded an equilibrium binding constant of 1.4 or 10.7 muM for the alkaline phosphatase signal peptide labeled at residue 22 or 2, respectively, with SecA, and a binding stoichiometry of one signal peptide bound per SecA monomer. Binding affinity measurements performed with a monomer-biased mutant indicate that the signal peptide binds equally well to SecA monomer or dimer. Distance measurements determined for 13 SecA mutants show that the SecA signal peptide-binding domain encompasses a portion of the preprotein cross-linking domain but also includes regions of nucleotide-binding domain 1 and particularly the helical scaffold domain. The identified region lies at a multidomain interface within the heart of SecA, surrounded by and potentially responsive to domains important for binding nucleotide, mature portions of the preprotein, and the SecYEG channel. Our FRET-mapped binding domain, in contrast to the domain identified by NMR spectroscopy, includes the two-helix finger that has been shown to interact with the preprotein during translocation and lies at the entrance to the protein-conducting channel in the recently determined SecA-SecYEG structure.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Canais de Translocação SEC , Proteínas SecA
7.
J Biol Chem ; 282(7): 4661-4668, 2007 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-17166834

RESUMO

The Sec-dependent protein translocation pathway promotes the transport of proteins into or across the bacterial plasma membrane. SecA ATPase has been shown to be a nanomotor that associates with its protein cargo as well as the SecYEG channel complex and to undergo ATP-driven cycles of membrane insertion and retraction that promote stepwise protein translocation. Previous studies have shown that both the 65-kDa N-domain and 30-kDa C-domain of SecA appear to undergo such membrane cycling. In the present study we performed in vivo sulfhydryl labeling of an extensive collection of monocysteine secA mutants under topologically specific conditions to identify regions of SecA that are accessible to the trans side of the membrane in its membrane-integrated state. Our results show that distinct regions of five of six SecA domains were labeled under these conditions, and such labeling clusters to a single face of the SecA structure. Our results demarcate an extensive face of SecA that interacts with SecYEG and is in fluid contact with the protein-conducting channel. The observed domain-specific labeling patterns should also provide important constraints on model building efforts in this dynamic system.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/enzimologia , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Periplasma/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Membrana Celular/genética , Escherichia coli/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação , Periplasma/genética , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , Canais de Translocação SEC , Proteínas SecA
8.
J Biol Chem ; 280(15): 14611-9, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15710614

RESUMO

Escherichia coli SecA uses ATP to drive the transport of proteins across cell membranes. Glutamate 210 in the "DEVD" Walker B motif of the SecA ATP-binding site has been proposed as the catalytic base for ATP hydrolysis (Hunt, J. F., Weinkauf, S., Henry, L., Fak, J. J., McNicholas, P., Oliver, D. B., and Deisenhofer, J. (2002) Science 297, 2018-2026). Consistent with this hypothesis, we find that mutation of glutamate 210 to aspartate results in a 90-fold reduction of the ATP hydrolysis rate compared with wild type SecA, 0.3 s(-1) versus 27 s(-1), respectively. SecA-E210D also releases ADP at a slower rate compared with wild type SecA, suggesting that in addition to serving as the catalytic base, glutamate 210 might aid turnover as well. Our results contradict an earlier report that proposed aspartate 133 as the catalytic base (Sato, K., Mori, H., Yoshida, M., and Mizushima, S. (1996) J. Biol. Chem. 271, 17439-17444). Re-evaluation of the SecA-D133N mutant used in that study confirms its loss of ATPase and membrane translocation activities, but surprisingly, the analogous SecA-D133A mutant retains full activity, revealing that this residue does not play a key role in catalysis.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Escherichia coli/enzimologia , Ácido Glutâmico/química , Proteínas de Membrana Transportadoras/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Ácido Aspártico/química , Bacillus subtilis/metabolismo , Sítios de Ligação , Catálise , Membrana Celular/metabolismo , Dimerização , Escherichia coli/metabolismo , Hidrólise , Cinética , Magnésio/química , Dados de Sequência Molecular , Mutação , Fosfatos/química , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Homologia de Sequência de Aminoácidos , Fatores de Tempo
9.
J Bacteriol ; 185(22): 6719-22, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14594848

RESUMO

SecA is an ATPase and motor protein that drives protein translocation across the bacterial plasma membrane. In Escherichia coli SecA levels are regulated by the secretion needs of the cell utilizing secM, which encodes a secreted protein. Previous studies demonstrated that this regulation requires a translational pause within secM, whose duration regulates the accessibility of the secA Shine-Dalgarno sequence on secM secA mRNA. Here we provide evidence that translocon "pulling" of nascent SecM is what regulates the duration of the secM translational pause, and thus secA expression levels, thereby providing direct support for this model.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Biossíntese de Proteínas , Membrana Celular/metabolismo , Canais de Translocação SEC , Proteínas SecA
10.
Science ; 297(5589): 2018-26, 2002 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12242434

RESUMO

The SecA adenosine triphosphatase (ATPase) mediates extrusion of the amino termini of secreted proteins from the eubacterial cytosol based on cycles of reversible binding to the SecYEG translocon. We have determined the crystal structure of SecA with and without magnesium-adenosine diphosphate bound to the high-affinity ATPase site at 3.0 and 2.7 angstrom resolution, respectively. Candidate sites for preprotein binding are located on a surface containing the SecA epitopes exposed to the periplasm upon binding to SecYEG and are thus positioned to deliver preprotein to SecYEG. Comparisons with structurally related ATPases, including superfamily I and II ATP-dependent helicases, suggest that the interaction geometry of the tandem motor domains in SecA is modulated by nucleotide binding, which is shown by fluorescence anisotropy experiments to reverse an endothermic domain-dissociation reaction hypothesized to gate binding to SecYEG.


Assuntos
Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Estrutura Terciária de Proteína , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalização , Cristalografia por Raios X , DNA Helicases/química , DNA Bacteriano/química , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Dimerização , Escherichia coli , Fator de Iniciação 4A em Eucariotos , Polarização de Fluorescência , Análise de Fourier , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Fatores de Iniciação de Peptídeos/química , Peptídeos/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Precursores de Proteínas/metabolismo , Estrutura Secundária de Proteína , Canais de Translocação SEC , Proteínas SecA , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA