Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041171

RESUMO

The practical and easy detection of dopamine levels in human fluids, such as urine and saliva, is of great interest due to the correlation of dopamine concentration with several diseases. In this work, the one-step synthesis of water-soluble carbon nanoparticles (CNPs), starting from artichoke extract, containing catechol groups, for the fluorescence sensing of dopamine is reported. Size, morphology, chemical composition and electronic structure of CNPs were elucidated by DLS, AFM, XPS, FT-IR, EDX and TEM analyses. Their optical properties were then explored by UV-vis and fluorescence measurements in water. The dopamine recognition properties of these CNPs were investigated in water through fluorescence measurements and we observed the progressive enhancement of the CNP emission intensity upon the progressive addition of dopamine, with a binding affinity value of log K = 5.76 and a detection limit of 0.81 nM. Selectivity towards dopamine was tested over other interfering analytes commonly present in human saliva. Finally, in order to perform a solid point of care test, CNPs were adsorbed on a solid support and exposed to different concentrations of dopamine, thus observing a pseudo-linear response, using a smartphone as a detector. Therefore, the detection of dopamine in simulated human saliva was performed with excellent results, in terms of selectivity and a detection limit of 100 pM.

2.
Protein Sci ; 33(4): e4962, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501507

RESUMO

Insulin is commonly used to treat diabetes and undergoes aggregation at the site of repeated injections in diabetic patients. Moreover, aggregation is also observed during its industrial production and transport and should be avoided to preserve its bioavailability to correctly adjust glucose levels in diabetic patients. However, monitoring the effect of various parameters (pH, protein concentration, metal ions, etc.) on the insulin aggregation and oligomerization state is very challenging. In this work, we have applied a novel Surface Plasmon Resonance (SPR)-based experimental approach to insulin solutions at various experimental conditions, monitoring how its diffusion coefficient is affected by pH and the presence of metal ions (copper and zinc) with unprecedented sensitivity, precision, and reproducibility. The reported SPR method, hereby applied to a protein for the first time, besides giving insight into the insulin oligomerization and aggregation phenomena, proved to be very robust for determining the diffusion coefficient of any biomolecule. A theoretical background is given together with the software description, specially designed to fit the experimental data. This new way of applying SPR represents an innovation in the bio-sensing field and expanding the potentiality of commonly used SPR instruments well over the canonical investigation of biomolecular interactions.


Assuntos
Técnicas Biossensoriais , Diabetes Mellitus , Humanos , Ressonância de Plasmônio de Superfície/métodos , Insulina/química , Reprodutibilidade dos Testes , Metais , Íons , Técnicas Biossensoriais/métodos
3.
Molecules ; 28(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37764220

RESUMO

Amyloid diseases have become a global concern due to their increasing prevalence. Transition metals, including copper, can affect the aggregation of the pathological proteins involved in these diseases. Copper ions play vital roles in organisms, but the disruption of their homeostasis can negatively impact neuronal function and contribute to amyloid diseases with toxic protein aggregates, oxidative stress, mitochondrial dysfunction, impaired cellular signaling, inflammation, and cell death. Gaining insight into the imbalance of copper ions and its impact on protein folding and aggregation is crucial for developing focused therapies. This review examines the influence of copper ions on significant amyloid proteins/peptides, offering a comprehensive overview of the current understanding in this field.


Assuntos
Doença de Alzheimer , Proteínas Amiloidogênicas , Humanos , Cobre/metabolismo , Dobramento de Proteína , Agregados Proteicos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo
4.
Metallomics ; 15(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36914220

RESUMO

The diffuse and renewed use of silver as antimicrobial agent has caused the development of resistance to silver ions in some bacterial strains, posing a serious threat for health systems. In order to cast light on the mechanistic features of resistance, here, we aimed to understand how silver interacts with the periplasmic metal-binding protein SilE which is engaged in bacterial silver detoxification. This aim was addressed by studying two peptide portions of SilE sequence (SP2 and SP3) that contain the putative motifs involved in Ag+ binding. We demonstrate that SP2 model peptide is involved in silver binding through its histidine and methionine residues in the two HXXM binding sites. In particular, the first binding site is supposed to bind the Ag+ ion in a linear fashion, while the second binding site complexes the silver ion in a distorted trigonal planar fashion. We propose a model where the SP2 peptide binds two silver ions when the concentration ratio Ag+/SP2 is ≥10.0. We also suggest that the two binding sites of SP2 have different affinity for silver. This evidence comes from the change in the path direction of the Nuclear Magnetic Resonance (NMR) cross-peaks upon the addition of Ag+. Here, we report the conformational changes of SilE model peptides occurring upon silver binding, monitored at a deep level of molecular details. This was addressed by a multifaceted approach, combining NMR, circular dichroism, and mass spectrometry experiments.


Assuntos
Peptídeos , Prata , Prata/química , Espectroscopia de Ressonância Magnética , Sítios de Ligação , Imageamento por Ressonância Magnética , Íons
5.
Anal Bioanal Chem ; 415(10): 1829-1840, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36808276

RESUMO

The possibility to monitor peptide and protein aggregation is of paramount importance in the so-called conformational diseases, as the understanding of many physiological pathways, as well as pathological processes involved in the development of such diseases, depends very much on the actual possibility to monitor biomolecule oligomeric distribution and aggregation. In this work, we report a novel experimental method to monitor protein aggregation, based on the change of the fluorescent properties of carbon dots upon protein binding. The results obtained in the case of insulin with this newly proposed experimental approach are compared with those obtained with other common experimental techniques normally used for the same purpose (circular dichroism, DLS, PICUP and ThT fluorescence). The greatest advantage of the hereby presented methodology over all the other experimental methods considered is the possibility to monitor the initial stages of insulin aggregation under the different experimental conditions sampled and the absence of possible disturbances and/or molecular probes during the aggregation process.


Assuntos
Insulina , Pontos Quânticos , Insulina/química , Carbono/química , Agregados Proteicos , Pontos Quânticos/química , Dicroísmo Circular , Corantes Fluorescentes/química
6.
ACS Chem Neurosci ; 13(10): 1588-1593, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35471926

RESUMO

l-Carnosine is an endogenous dipeptide that has high potential for therapeutic purposes, being an antioxidant with metal chelating, anti-aggregating, anti-inflammatory, and neuroprotective properties. Despite its potential therapeutic values, the biomolecular mechanisms involved in neuroprotection are not fully understood. Here, we demonstrate, at chemical and biochemical levels, that insulin-degrading enzyme plays a pivotal role in carnosine neuroprotection.


Assuntos
Carnosina , Insulisina , Fármacos Neuroprotetores , Antioxidantes/farmacologia , Carnosina/farmacologia , Dipeptídeos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
7.
Front Mol Biosci ; 9: 841814, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309510

RESUMO

Conventional cancer therapies suffer from severe off-target effects because most of them target critical facets of cells that are generally shared by all rapidly proliferating cells. The development of new therapeutic agents should aim to increase selectivity and therefore reduce side effects. In addition, these agents should overcome cancer cell resistance and target cancer stem cells. Some copper ionophores have shown promise in this direction thanks to an intrinsic selectivity in preferentially inducing cuproptosis of cancer cells compared to normal cells. Here, Cu ionophores are discussed with a focus on selectivity towards cancer cells and on the mechanisms responsible for this selectivity. The proposed strategies, to further improve the targeting of cancer cells by copper ionophores, are also reported.

8.
J Inorg Biochem ; 228: 111691, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34929542

RESUMO

Zinc can play a pathophysiological role in several diseases and can interfere in key processes of microbial growth. This evidence justifies the efforts in applying Zinc ionophores to restore Zinc homeostasis and treat bacterial/viral infections such as coronavirus diseases. Zinc ionophores increase the intracellular concentration of Zinc ions causing significant biological effects. This review provides, for the first time, an overview of the applications of the main Zinc ionophores in Zinc deficiency, infectious diseases, and in cancer, discussing the pharmacological and coordination properties of the Zinc ionophores.


Assuntos
Doenças Transmissíveis/tratamento farmacológico , Ionóforos/química , Neoplasias/tratamento farmacológico , Zinco/química , Zinco/farmacologia , Acrodermatite/tratamento farmacológico , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Antivirais/farmacologia , Homeostase/efeitos dos fármacos , Humanos , Ionóforos/farmacologia , Zinco/deficiência , Tratamento Farmacológico da COVID-19
9.
Chemistry ; 26(70): 16690-16705, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32627921

RESUMO

Metal dysregulation, oxidative stress, protein modification, and aggregation are factors strictly interrelated and associated with neurodegenerative pathologies. As such, all of these aspects represent valid targets to counteract neurodegeneration and, therefore, the development of metal-binding compounds with other properties to combat multifactorial disorders is definitely on the rise. Herein, the synthesis and in-depth analysis of the first hybrids of carnosine and 8-hydroxyquinoline, carnoquinolines (CarHQs), which combine the properties of the dipeptide with those of 8-hydroxyquinoline, are reported. CarHQs and their copper complexes were characterized through several techniques, such as ESI-MS and NMR, UV/Vis, and circular dichroism spectroscopy. CarHQs can modulate self- and copper-induced amyloid-ß aggregation. These hybrids combine the antioxidant activity of their parent compounds. Therefore, they can simultaneously scavenge free radicals and reactive carbonyl species, thanks to the phenolic group and imidazole ring. These results indicate that CarHQs are promising multifunctional candidates for neurodegenerative disorders and they are worthy of further studies.


Assuntos
Peptídeos beta-Amiloides/química , Carnosina/química , Carnosina/farmacologia , Cobre/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Carnosina/síntese química , Cobre/química , Ligação Proteica/efeitos dos fármacos
10.
Chemistry ; 26(8): 1871-1879, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31804737

RESUMO

Mounting evidence supports the role of amyloidogenesis, oxidative stress, and metal dyshomeostasis in the development of neurodegenerative disorders. Parkinson's Disease is characterized by α-synuclein (αSyn) accumulation and aggregation in brain regions, also promoted by Cu2+ . αSyn is modified by reactive carbonyl species, including acrolein (ACR). Notwithstanding these findings, the interplay between ACR, copper, and αSyn has never been investigated. Therefore, we explored more thoroughly the effects of ACR on αSyn using an approach based on LC-MS/MS analysis. We also evaluated the influence of Cu2+ on the protein carbonylation and how the ACR modification impacts the Cu2+ binding and the production of Reactive Oxygen Species (ROS). Finally, we investigated the effects of ACR and Cu2+ ions on the αSyn aggregation by dynamic light scattering and fluorescence assays. Cu2+ regioselectively inhibits the modification of His50 by ACR, the carbonylation lowers the affinity of His50 for Cu2+ and ACR inhibits αSyn aggregation both in the presence and in the absence of Cu2+ .


Assuntos
Acroleína/química , Cobre/química , alfa-Sinucleína/química , Acroleína/farmacologia , Cromatografia Líquida de Alta Pressão , Cobre/farmacologia , Difusão Dinâmica da Luz , Humanos , Estresse Oxidativo/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem , alfa-Sinucleína/análise , alfa-Sinucleína/metabolismo
11.
ChemMedChem ; 14(16): 1484-1492, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31162826

RESUMO

Metal dyshomeostasis is central to a number of disorders that result from, inter alia, oxidative stress, protein misfolding, and cholesterol dyshomeostasis. In this respect, metal deficiencies are usually readily corrected by treatment with supplements, whereas metal overload can be overcome by the use of metal-selective chelation therapy. Deferasirox, 4-[(3Z,5E)-3,5-bis(6-oxo-1-cyclohexa-2,4-dienylidene)-1,2,4-triazolidin-1-yl]benzoic acid, Exjade, or ICL670, is used clinically to treat hemosiderosis (iron overload), which often results from multiple blood transfusions. Cyclodextrins are cyclic glucose units that are extensively used in the pharmaceutical industry as formulating agents as well as for encapsulating hydrophobic molecules such as in the treatment of Niemann-Pick type C or for hypervitaminosis. We conjugated deferasirox, via an amide coupling reaction, to both 6A -amino-6A -deoxy-ß-cyclodextrin and 3A -amino-3A -deoxy-2A (S),3A (S)-ß-cyclodextrin, at the upper and lower rim, respectively, creating hybrid molecules with dual properties, capable of both metal chelation and cholesterol encapsulation. Our findings emphasize the importance of the conjugation of ß-cyclodextrin with deferasirox to significantly improve the biological properties and to decrease the cytotoxicity of this drug.


Assuntos
Antioxidantes/farmacologia , Ciclodextrinas/farmacologia , Deferasirox/análogos & derivados , Deferasirox/farmacologia , Quelantes de Ferro/farmacologia , Animais , Antioxidantes/síntese química , Células CHO , Cricetulus , Ciclodextrinas/síntese química , Deferasirox/síntese química , Células Hep G2 , Humanos , Quelantes de Ferro/síntese química , Multimerização Proteica/efeitos dos fármacos , alfa-Sinucleína/metabolismo
12.
Eur J Med Chem ; 167: 10-36, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30743095

RESUMO

A host of human diseases, including Parkinson's disease and Dementia with Lewy bodies, are suspected to be directly linked to protein aggregation. Amyloid protein aggregates and oligomeric intermediates of α-synuclein are observed in synucleinopathies and considered to be mediators of cellular toxicity. Hence, α-synuclein has seen as one of the leading and most compelling targets and is receiving a great deal of attention from researchers. Nevertheless, there is no neuroprotective approach directed toward Parkinson's disease or other synucleinopathies so far. In this review, we summarize the available data concerning inhibitors of α-synuclein aggregation and their advancing towards clinical use. The compounds are grouped according to their chemical structures, providing respective insights into their mechanism of action, pharmacology, and pharmacokinetics. Overall, shared structure-activity elements are emerging, as well as specific binding modes related to the ability of the modulators to establish hydrophobic and hydrogen bonds interactions with the protein. Some molecules with encouraging in vivo data support the possibility of translation to the clinic.


Assuntos
Proteínas Amiloidogênicas/efeitos dos fármacos , Descoberta de Drogas , Agregação Patológica de Proteínas/tratamento farmacológico , alfa-Sinucleína/antagonistas & inibidores , Proteínas Amiloidogênicas/metabolismo , Humanos , Relação Estrutura-Atividade , alfa-Sinucleína/metabolismo
13.
Invest New Drugs ; 37(4): 771-778, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30556100

RESUMO

Polymeric cyclodextrin-based nanoparticles are currently undergoing clinical trials as nanotherapeutics. Using a non-covalent approach, we decorated two cross-linked cyclodextrin polymers of different molecular weights with an RGD peptide derivative to construct a novel carrier for the targeted delivery of doxorubicin. RGD is the binding sequence for the integrin receptor family that is highly expressed in tumour tissues. The assembled host-guest systems were investigated using NMR and DLS techniques. We found that, in comparison with free doxorubicin or the binary complex doxorubicin/cyclodextrin polymer, the RGD units decorating the cyclodextrin-based nanosystems improved the selectivity and cytotoxicity of the complexed doxorubicin towards cultured human tumour cell lines. Our results suggest that the nanocarriers under study may contribute to the development of new platforms for cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Celulose/administração & dosagem , Ciclodextrinas/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Oligopeptídeos/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos
14.
Chemistry ; 24(24): 6349-6353, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29624764

RESUMO

Although fibrillar amyloid beta peptide (Aß) aggregates are one of the major hallmarks of Alzheimer's disease, increasing evidence suggests that soluble Aß oligomers are the primary toxic species. Targeting the oligomeric species could represent an effective strategy to interfere with Aß toxicity. In this work, the biological properties of 5[4-(6-O-ß-cyclodextrin)-phenyl],10,15,20-tri(4-hydroxyphenyl)-porphyrin and its zinc complex were tested, as new molecules that interact with Aß and effectively prevent its cytotoxicity. We found that these systems can cross the cell membrane to deliver Aß intracellularly and promote its clearance. Our results provide evidence for the use of cyclodextrin-porphyrin derivatives as a promising strategy to target amyloid aggregation.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/efeitos dos fármacos , Ciclodextrinas/farmacologia , Citotoxinas/farmacologia , Porfirinas/farmacologia , Zinco/química , beta-Ciclodextrinas/farmacologia , Peptídeos beta-Amiloides/química , Humanos , Cinética
15.
Future Med Chem ; 10(6): 663-677, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29417824

RESUMO

This review focuses on metal complexes of cyclodextrin (CyD) derivatives designed for application as therapeutics or diagnostics. We discuss examples of metalloprotein models (hemoglobin, superoxide dismutase and catalase) based on cyclodextrins. The hydrophobic microenvironment of CyDs stabilizes the Fe(II) porphyrin system that can reversibly bind O2 or CO in water. Superoxide dismutase/catalase mimetics exploit functionalization with CyDs, which increase their solubility and biological activity. Furthermore, CyDs have been used as scaffolds to obtain multicenter metal complexes: paramagnetic systems act as high-performance contrast agents for magnetic resonance imaging applications. Finally, we review CyD ligands, whose use appears promising in metal chelation therapy, as CyD moiety confers additional properties to the ligands.


Assuntos
Química Farmacêutica , Complexos de Coordenação/química , Dextranos/química , Portadores de Fármacos/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Complexos de Coordenação/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/química , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Carbohydr Polym ; 177: 355-360, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28962779

RESUMO

Cyclodextrins have been used to encapsulate drugs improving their stability and efficiently regulating their release. Polymeric nanoparticles containing cyclodextrins are currently undergoing clinical trials as nanotherapeutics. In this context, we have synthesized new linear polymers based on polyglutamic acid with pendant ß- or γ-cyclodextrins, using a high yield reaction route. The new polymers with an average number of about 17 cyclodextrin cavities were characterized (NMR, MALDI-MS, DLS) and tested as carriers of doxorubicin in human tumor cells. They can include doxorubicin, and the inclusion complexes show antiproliferative activity in human tumor cells.


Assuntos
Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Ácido Poliglutâmico/química , beta-Ciclodextrinas/química , gama-Ciclodextrinas/química , Linhagem Celular Tumoral , Humanos , Polímeros
17.
Metallomics ; 9(10): 1439-1446, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28932850

RESUMO

Proliferation and programmed cell death are tightly correlated with the ubiquitin-proteasome system (UPS). Alterations in the UPS may be implicated in pathological conditions such as the proteasome over-activity in cancer cells. Mounting evidence indicates that many types of actively proliferating malignant cells are more sensitive to proteasome inhibition than normal cells, and therefore UPS inhibitors are actively pursued as anticancer agents. The approval of the proteasome inhibitor drug bortezomib for the treatment of myeloma and lymphoma further highlights the need for UPS inhibitors. Recent studies have suggested that clioquinol and 5-amino-8-hydroxyquinoline can inhibit proteasome activity and induce apoptosis in human cancer cells. As for clioquinol, a copper-dependent and -independent mechanism has been proposed to explain the inhibition of the proteasome whereas the activity of 5-amino-8-hydroxyquinoline has not been explored in the presence of copper(ii) ions. Herein, we investigated the biological activity of some 8-hydroxyquinolines by using human ovarian (A2780) and lung (A549) cancer cells. The effect of copper(ii) on the activity of these compounds was also evaluated. The investigated systems inhibit the chymotrypsin-like activity of the proteasome and induce growth inhibition and apoptosis in a concentration-dependent manner. Copper(ii) ions increase the activity of 8-hydroxyquinoline derivatives except in the case of 5-amino-8-hydroxyquinoline. This study suggests the great potential of amino- and chloro-8-hydroxyquinolines as anticancer agents. Furthermore, it clarifies some aspects concerning the activity of 5-amino-8-hydroxyquinoline, which has been previously proposed as a proteasome inhibitor capable of overcoming resistance to bortezomib.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Cobre/química , Hidroxiquinolinas/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Proteassoma/farmacologia , Antineoplásicos/química , Feminino , Humanos , Hidroxiquinolinas/química , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/química , Células Tumorais Cultivadas , Ubiquitinação
18.
Cancer Chemother Pharmacol ; 79(4): 725-736, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28275870

RESUMO

PURPOSE: By a scaffold shortening strategy, a small series of retinoidal amides fenretinide (4-HPR) analogs have been synthesized from α, ß-ionones and tested for their antiproliferative and differentiating activities, and antioxidant effect. METHODS: The antiproliferative activity and triggering of apoptosis of our short retinoids were evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and 4'-6-diamidino-2-phenylindole staining and microscope evaluation after 3- or 6-day exposure, while their differentiating activity was established by the analysis of the expression of the CD11b marker of differentiation in treated HL60 target cells and by the superoxide production assayed colorimetrically by the nitro blue tetrazolium-reducing activity assay. Finally, the antioxidant activity was determined by the 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) diammonium salt radical cation decolourisation assay utilizing the antioxidant Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) as reference (Trolox equivalent antioxidant capacity, or TEAC). Docking analysis was performed to study the binding features to the Retinoic Acid Receptor alpha (RARα). RESULTS: While no pharmacologically relevant antiproliferative activity was evidenced, some of our short retinoids showed a differentiating and antioxidant activity similar to that of 4-HPR. In particular, compound 2b6 displayed a scavenging activity two times more efficient than 4-HPR itself. Finally, the docking analysis showed that these short retinoids, like 4-HPR, bind to the RARα protein with good fitness scores. CONCLUSION: Our data could pave the way for the design of new potent and less toxic antioxidant and differentiating compounds related to 4-HPR.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fenretinida/análogos & derivados , Fenretinida/farmacologia , Amidas/farmacologia , Apoptose/efeitos dos fármacos , Antígeno CD11b/metabolismo , Proliferação de Células/efeitos dos fármacos , Cromanos/química , Fenretinida/síntese química , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/farmacologia , Células HL-60 , Humanos , Simulação de Acoplamento Molecular , Superóxidos/metabolismo
19.
Chemistry ; 23(18): 4442-4449, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28150894

RESUMO

Cyclodextrins are used as building blocks for the development of a host of polymeric biomaterials. The cyclodextrin polymers have found numerous applications as they exhibit unique features such as mechanical properties, stimuli responsiveness and drug loading ability. Notwithstanding the abundance of cyclodextrin polymers studied, metal-chelating polymers based on cyclodextrins have been poorly explored. Herein we report the synthesis and the characterization of the first metal-chelating ß-cyclodextrin polymer bearing 8-hydroxyquinoline ligands. The metal ions (Cu2+ or Zn2+ ) can modulate the assembly of the polymer nanoparticles. Moreover, the protective activity of the new chelating polymer against self- and metal-induced Aß aggregation and free radical species are significantly higher than those of the parent compounds. These synergistic effects suggest that the incorporation of hydroxyquinoline moieties into a soluble ß-cyclodextrin polymer could represent a promising strategy to design multifunctional biomaterials.


Assuntos
Materiais Biocompatíveis/química , Ciclodextrinas/química , Hidroxiquinolinas/química , Nanopartículas/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Cobre/química , Difusão Dinâmica da Luz , Ligantes , Espectroscopia de Ressonância Magnética , Nefelometria e Turbidimetria , Tamanho da Partícula , Agregados Proteicos/efeitos dos fármacos , Espectrofotometria , Zinco/química , beta-Ciclodextrinas/química
20.
Chem Asian J ; 12(1): 110-115, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27863114

RESUMO

The mounting evidence supporting the role of metal ions in several diseases has turned metal-ion chelation therapy into a promising treatment strategy. The design of efficient metal-binding ligands requires in-depth knowledge of molecular structure and stability constants of the complexes formed. This paper presents an extensive overview on the stability of zinc(II) and copper(II) complexes of a series of cyclodextrin-8-hydroxyquinoline conjugates. In order to explain the differences observed in the stability constants between the metal complexes of the 6-functionalized and 3-functionalized cyclodextrin isomers, conformational analysis and DFT simulations were also performed. Molecular simulations allowed us to clarify the binding mode and to explain the differences in the stability constants of the metal complexes of these derivatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA