Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 423(Pt B): 127246, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34844363

RESUMO

Tobacco smoking is classified as a human carcinogen. A wide variety of new products, in particular electronic cigarettes (e-cigs), have recently appeared on the market as an alternative to smoking. Although the in vitro toxicity of e-cigs is relatively well known, there is currently a lack of data on their long-term health effects. In this context, the aim of our study was to compare, on a mouse model and using a nose-only exposure system, the in vivo genotoxic and mutagenic potential of e-cig aerosols tested at two power settings (18 W and 30 W) and conventional cigarette (3R4F) smoke. The standard comet assay, micronucleus test and Pig-a gene mutation assay were performed after subacute (4 days), subchronic (3 months) and chronic (6 months) exposure. The generation of oxidative stress was also assessed by measuring the 8-hydroxy-2'-deoxyguanosine and by using the hOGG1-modified comet assay. Our results show that only the high-power e-cig and the 3R4F cigarette induced oxidative DNA damage in the lung and the liver of exposed mice. In return, no significant increase in chromosomal aberrations or gene mutations were noted whatever the type of product. This study demonstrates that e-cigs, at high-power setting, should be considered, contrary to popular belief, as hazardous products in terms of genotoxicity in mouse model.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Aerossóis/toxicidade , Animais , Dano ao DNA , Eletrônica , Camundongos
2.
Biomedicines ; 9(12)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34944654

RESUMO

(1) Background: viral infections are a frequent cause of chronic obstructive pulmonary disease (COPD) exacerbations, which are responsible for disease progression and mortality. Previous reports showed that IL-20 cytokines facilitate bacterial lung infection, but their production and their role in COPD and viral infection has not yet been investigated. (2) Methods: C57BL/6 WT and IL-20 Rb KO mice were chronically exposed to air or cigarette smoke (CS) to mimic COPD. Cytokine production, antiviral response, inflammation and tissue damages were analyzed after PVM infection. (3) Results: CS exposure was associated with an increase in viral burden and antiviral response. PVM infection in CS mice enhanced IFN-γ, inflammation and tissue damage compared to Air mice. PVM infection and CS exposure induced, in an additive manner, IL-20 cytokines expression and the deletion of IL-20 Rb subunit decreased the expression of interferon-stimulated genes and the production of IFN-λ2/3, without an impact on PVM replication. Epithelial cell damages and inflammation were also reduced in IL-20 Rb-/- mice, and this was associated with reduced lung permeability and the maintenance of intercellular junctions. (4) Conclusions: PVM infection and CS exposure additively upregulates the IL-20 pathway, leading to the promotion of epithelial damages. Our data in our model of viral exacerbation of COPD identify IL-20 cytokine as a potential therapeutic target.

3.
FASEB J ; 33(2): 2472-2483, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30307769

RESUMO

Hepatitis B virus (HBV) infection and bile acid (BA) metabolism are interdependent: infection modifies the expression of the BA nuclear receptor farnesoid X receptor (FXR)-α, and modulation of FXRα activity by ligands alters HBV replication. Mechanisms of HBV control by FXRα remain to be unveiled. FXRα silencing in HBV-infected HepaRG cells decreased the viral covalently closed circular (ccc)DNA pool size and transcriptional activity. Treatment with the FXRα agonist GW4064 inhibited FXRα proviral effect on cccDNA similarly for wild-type and hepatitis B viral X protein (HBx)-deficient virus, whereas agonist-induced inhibition of pregenomic and precore RNA transcription and viral DNA secretion was HBx dependent. These data indicated that FXRα acts as a proviral factor by 2 different mechanisms, which are abolished by FXRα stimulation. Finally, infection of C3H/HeN mice by a recombinant adeno-associated virus-2/8-HBV vector induced a sustained HBV replication in young mice in contrast with the transient decline in adult mice. Four-week GW4064 treatment of infected C3H/HeN mice decreased secretion of HBV DNA and HB surface antigen in adult mice only. These results suggest that the physiologic balance of FXRα expression and activation by bile acid is a key host metabolic pathway in the regulation of HBV infection and that FXRα can be envisioned as a target for HBV treatment.-Mouzannar, K., Fusil, F., Lacombe, B., Ollivier, A., Ménard, C., Lotteau, V., Cosset, F.-L., Ramière, C., André, P. Farnesoid X receptor α is a proviral host factor for hepatitis B virus that is inhibited by ligands in vitro and in vivo.


Assuntos
Regulação da Expressão Gênica , Vírus da Hepatite B/patogenicidade , Hepatite B/virologia , Provírus/patogenicidade , Receptores Citoplasmáticos e Nucleares/metabolismo , Replicação Viral , Animais , DNA Viral/genética , Feminino , Células Hep G2 , Hepatite B/metabolismo , Hepatite B/patologia , Vírus da Hepatite B/genética , Humanos , Técnicas In Vitro , Ligantes , Camundongos , Camundongos Endogâmicos C3H , Provírus/genética
4.
Sci Rep ; 8(1): 5390, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599452

RESUMO

Current therapies for chronic hepatitis B virus (HBV) infections are effective at decreasing the viral load in serum, but do not lead to viral eradication. Recent studies highlighted the therapeutic or "adjuvant" potential of immune-modulators. Our aim was to explore the direct anti-HBV effect of Toll-Like-Receptors (TLR) agonists in hepatocytes. HBV-infected primary human hepatocytes (PHH) or differentiated HepaRG cells (dHepaRG) were treated with various TLR agonists. Amongst all TLR ligands tested, Pam3CSK4 (TLR1/2-ligand) and poly(I:C)-(HMW) (TLR3/MDA5-ligand) were the best at reducing all HBV parameters. No or little viral rebound was observed after treatment arrest, implying a long-lasting effect on cccDNA. We also tested Riboxxol that features improved TLR3 specificity compared to poly(I:C)-(HMW). This agonist demonstrated a potent antiviral effect in HBV-infected PHH. Whereas, poly(I:C)-(HMW) and Pam3CSK4 mainly induced the expression of classical genes from the interferon or NF-κB pathway respectively, Riboxxol had a mixed phenotype. Moreover, TLR2 and TLR3 ligands can activate hepatocytes and immune cells, as demonstrated by antiviral cytokines produced by stimulated hepatocytes and peripheral blood mononuclear cells. In conclusion, our data highlight the potential of innate immunity activation in the direct control of HBV replication in hepatocytes, and support the development of TLR-based antiviral strategies.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/fisiologia , Receptores Toll-Like/agonistas , Replicação Viral/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Interferons/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ligantes , Lipopeptídeos/farmacologia , NF-kappa B/metabolismo , Receptores Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA