Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 222: 116070, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387528

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating sequela that is difficult for both clinicians and cancer patients to manage. Precise mechanisms of CIPN remain elusive and current clinically prescribed therapies for CIPN have limited efficacy. Recent studies have begun investigating the interactions between the peripheral and central nervous systems and the immune system. Understanding these neuroimmune interactions may shift the paradigm of elucidating CIPN mechanisms. Although the contribution of immune cells to CIPN pathogenesis represents a promising area of research, its fully defined mechanisms have not yet been established. Therefore, in this review, we will discuss (i) current shortcoming of CIPN treatments, (ii) the roles of neuroimmune interactions in CIPN development and (iii) potential neuroimmune interaction-targeting treatment strategies for CIPN. Interestingly, monocytes/macrophages in dorsal root ganglia; microglia and astrocytes in spinal cord; mast cells in skin; and Schwann cell near peripheral nerves have been identified as inducers of CIPN behaviors, whereas T cells have been found to contribute to CIPN resolution. Additionally, nerve-resident immune cells have been targeted as prevention and/or therapy for CIPN using traditional herbal medicines, small molecule inhibitors, and intravenous immunoglobulins in a preclinical setting. Overall, unveiling neuroimmune interactions associated with CIPN may ultimately reduce cancer mortality and improve cancer patients' quality of life.


Assuntos
Antineoplásicos , Neoplasias , Doenças do Sistema Nervoso Periférico , Humanos , Antineoplásicos/efeitos adversos , Neuroimunomodulação , Qualidade de Vida , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Neoplasias/tratamento farmacológico
2.
J Bone Miner Metab ; 41(3): 371-379, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36752903

RESUMO

Once cancer metastasizes to the bone, the prognosis of cancer patients becomes extremely poor. Unfortunately, the current most successful treatment for bone metastasis can extend their survival by only a few months. Although recent studies have revealed promising impacts of cancer immunotherapies, their treatment efficacy on bone metastatic diseases remains controversial. Therefore, in this review, we discussed (i) preclinical and clinical evidence of the immunotherapeutic strategies for cancer bone metastasis, mainly focusing on cell-based immunotherapy, cytokine-based immunotherapy, and immune checkpoint blockade, and (ii) current shortcomings of immunotherapy for bone metastasis and their potential future directions. Although the evidence on treatment efficacy and safety, as well as long-term effects, is limited, immunotherapies could induce partial or complete remissions in a few cancer patients with bone metastasis. However, there are still hurdles, such as the immunosuppressive nature of the bone marrow microenvironment and poor distribution of cell-based immunotherapies to bone, that need to be overcome to enhance the treatment efficacy of immunotherapies on bone metastasis. While it is apparent that further investigation is needed regarding immunotherapeutic treatment efficacy in patients with bone metastasis, this therapy may prove to be clinically novel in this subset of cancer patients.


Assuntos
Neoplasias Ósseas , Imunoterapia , Humanos , Imunoterapia/efeitos adversos , Neoplasias Ósseas/tratamento farmacológico , Citocinas , Prognóstico , Resultado do Tratamento , Microambiente Tumoral
3.
Bone Rep ; 17: 101606, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35910404

RESUMO

Bone is one of the most common sites of cancer metastasis. Once cancer metastasizes to the bone, the mortality rate of cancer patients dramatically increases. Although the exact mechanisms for this observation remain elusive, recent studies have revealed that the complex crosstalk between bone marrow microenvironment and bone metastatic cancer cells is responsible for the induction of treatment resistance. Consequently, bone metastasis is currently considered incurable. Bone metastasis not only impairs the patients' survival, but also negatively affects their quality of life by causing painful complications. It has recently been implicated the regulatory role of exosomes in cancer development and/or progression as a delivery biomaterial between cancer cells and tumor microenvironment. However, little is known as to how exosomes contribute to the progression of bone metastasis by impaction on the crosstalk between bone metastatic cancer cells and bone marrow microenvironment. Here, we highlighted the emerging roles of cancer-derived exosomes in (i) the process of dissemination and bone colonization of bone metastatic cancer cells, (ii) the enhancement of crosstalk between bone marrow microenvironment and bone metastatic cancer cells, (iii) the development of its resultant painful complications, and (iv) the clinical applications of exosomes in the bone metastatic setting.

4.
Future Med Chem ; 11(8): 847-855, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30994367

RESUMO

Gastrointestinal illnesses pose a significant worldwide disease burden and are associated with an array of medicinal and surgical therapies. Standard pharmaceutical options have adverse effects, prompting the rise of nutraceutical or food-derivative therapies. Here, we present an overview of the current nutraceutical therapies in gastrointestinal disease. We then introduce the calcium-sensing receptor (CaSR) as a novel therapeutic target. A G-protein-coupled receptor found in apical and basal intestinal cells, the CaSR modulates intestinal fluid secretion and mucosal integrity. Applying nutraceuticals that upregulate the CaSR may alleviate symptoms seen across a spectrum of illnesses. At last, we discuss how nanoparticle technology can be implemented to effectively deliver nutraceuticals to diseased regions of the intestine, thereby minimizing systemic side effects.


Assuntos
Suplementos Nutricionais , Gastroenteropatias/terapia , Animais , Suplementos Nutricionais/análise , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Modelos Moleculares , Nanopartículas/uso terapêutico , Receptores de Detecção de Cálcio/metabolismo
5.
Front Physiol ; 10: 1497, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920702

RESUMO

The stomach has unique embryologic and anatomic properties, making the study of the parietal cell technically challenging. Numerous individuals have devoted decades of research to unraveling the pathophysiological basis of this cell type. Here, we perform a scoping review of novel in vitro and in vivo methodology pertaining to the parietal cell. First, we evaluate early in vitro methods of parietal cell analysis. This section focuses on three major techniques: gastric gland isolation, parietal cell isolation, and parietal cell culture. We also discuss parietal cell physiology and pathophysiology. Second, we discuss more contemporary efforts involving confocal microscopy and gastric organoids, a new technique that holds much promise in unveiling the temporal-spatial dynamics of the cell. Finally, we will discuss findings from our laboratory where we identified an active gastric vacuolar H+-ATPase as a putative mechanism for refractory GERD. Overall, this review aims to highlight the major milestones in understanding an elusive yet important cell. Though in no way comprehensive, we hope to provide a birds-eye view to the study of this unique cell type in the gastrointestinal tract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA